Порождение нелинейных регрессионных моделей (пример)
Материал из MachineLearning.
Порождение нелинейных регрессионных моделей - порождение функций, зависящих от параметров и от одной или нескольких свободных переменных. Зависимость от параметров предполагается нелинейной.
Содержание |
Постановка задачи
Задана выборка из пар . Задан набор порождающих функций одного и двух аргументов , которые зависят от параметров и свободных переменных . Функции гладкие параметрические. Требуется создать алгоритм, порождающий лексикографически упорядоченные суперпозиции возрастающей сложности. Каждая суперпозиция является регрессионной моделью одной независимой переменной. Сравнить качество моделей и регрессионные остатки на порожденном множестве.
Дополнительные предположения
Предполагается, что функции корректно работают в случае вызова в виде .
Интерпретация на языке деревьев
Заметим вначале, что суперпозиция функций может быть задана двоичным деревом , вершины которого ∈, корень – самая внешняя функция суперпозиции. Под глубиной вершины будем понимать расстояние от неё до корня. Если у вершины один потомок, то соответствующая функция запишется как , если два – то , если ноль – то или .
Так, дереву А соответствует суперпозиция , а дереву Б – суперпозиция .
Возможна и другая постановка алгоритма. Она особенно ценна, если нельзя вызвать в виде . Изменение состоит в том, что листья дерева суперпозиции считаются не функциями, а свободными переменными. В этом случае дереву А будет соответствовать суперпозиция дереву Б – суперпозиция .
Порождение множества деревьев суперпозиций
Комбинаторная простота этого шага алгоритма заключается в том, что изоморфные деревья задают разные суперпозиции. Однако простые смещения вершин не дают новых деревьев.
Так, деревья А и В различны с точки зрения задаваемых суперпозиций, но деревья А и Б идентичны. Поэтому при машинной реализации можно вообще исключить деревья типа Б, т.е. если из вершины исходит одно ребро, будем «рисовать» его «сверху вниз, справа налево», как в деревьях А и В.
Порождение деревьев осуществим по уровням глубины. Т.е. для задачи порождения деревьев высоты не больше породим все деревья высоты не больше и запишем их в список . В список поместим все деревья высоты ровно . Далее возьмём дерево из списка , построим всевозможные деревья высоты из него, получаемые добавлением рёбер к вершинам нижнего уровня глубины, и поместим их в конец списка . То же проделаем со всеми остальными деревьями списка .