SVM регрессия (пример)
Материал из MachineLearning.
SVM (Support Vector Machine, машина опорных векторов) — это особый класс алгоритмов, который характеризуется использованием ядер, отсутствием локальных минимумов, и т. д.
Постановка задачи
Дано: Обучающая выборка , где -признаковое описание i-го объекта, - характеристика, приписываемая объекту. Функция потерь имеет вид для каждого вектора , где .
Найти: такую функцию , которая описывает зависимость наилучшим образом.
Алгоритм
В этом примере решается задача построения линейной SVM регрессии. Для этого решается прямая задача минимизации функционала потерь, в предположении что решение задается линейной комбинацией неких порождающих функций
Для этого вводятся обозначение и дополнительные переменные и :
- , , .
Геометрический смысл и :
Далее решается задача квадратичного программирования:
Эту же задачу можно преобразовать к виду , при условии, что а также, , где - вектор-столбец, составленный из столбцов , тоесть, где все переменные объеденены в один столбец неизвестных. В таких обозначениях , где единиц и нулей в и соответственно столько же, сколько порождающих фукций, а размерность матрицы и вектора равна размерности .
Теперь построим матрицу А и столбцы и . Преобразуем задачу квадратичного программирования к виду
Отсюдого получаем, , и количество минус бесконечностей в lb равно количеству порождающих функций, а количество нулей равно .
Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |