Участник:Anton/Песочница
Материал из MachineLearning.
Статья в настоящий момент дорабатывается. Формулировка задания находится в стадии формирования. Просьба не приступать к выполнению задания, пока это предупреждение не будет удалено. Anton 18:11, 7 апреля 2011 (MSD) |
|
Перейти к основной странице курса
Задание состоит из двух вариантов.
Среда реализации для всех вариантов – MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.
Марковское случайное поле
Марковское случайное поле (MRF) — графическая модель, энергия (отрицательный логарифм правдоподобия) которой записывается в виде:
где P — множество индексов переменных, E — система соседства, D — унарные потенциалы, V — бинарные потенциалы.
Рассмотрим модель со следующими ограничения:
- переменные дискретны и принимают значения из множества {1,…,K}, K ≥ 2,
- система соседства E - прямоугольная решетка,
- бинарные потенциалы V являются обобщенными потенциалами Поттса: .
В рамках этого задания требуется:
- реализовать алгоритм поиска конфигурации MRF, обладающей минимальной энергией (TRW или α-expansion),
- применить реализованный алгоритм для задачи интерактивной сегментации изображений.
MRF для интерактивной сегментации изображений
Задача сегментации изображения состоит в отнесении каждого пикселя изображения к одному из K классов. В интерактивном варианте пользователь отмечает часть пикселей, принадлежащих каждому классу. После этого требуется автоматически разметить оставшуюся часть изображения.
Для задачи сегментации марковское случайное поле строится, например, так:
- Каждая переменная соответствует пикселю изображения.
- Используется стандартная 4-х связная система соседства.
- Если пиксель p отнесен пользователем к классу k, то унарные потенциалы "разрешают" переменной принимать только значение k:
. - Если пиксель p не отнесен пользователем ни к одному из классов, то унарные потенциалы принимают значения равные минус логарифму правдоподобия принадлежности пикселя цвета соответствующему классу: .
- Цветовые модели объектов можно восстановить по пикселям, размеченным пользователем, при помощи EM-алгоритма восстановления гауссовской смеси в пространстве Luv.