Участник:Anton/Песочница
Материал из MachineLearning.
Статья в настоящий момент дорабатывается. Формулировка задания находится в стадии формирования. Просьба не приступать к выполнению задания, пока это предупреждение не будет удалено. Anton 18:11, 7 апреля 2011 (MSD) |
|
Перейти к основной странице курса
Задание состоит из двух вариантов.
Среда реализации для всех вариантов – MATLAB. Неэффективная реализация кода может негативно отразиться на оценке.
Марковское случайное поле
Марковское случайное поле (MRF) — графическая модель, энергия (отрицательный логарифм правдоподобия) которой записывается в виде:
где P — множество индексов переменных, E — система соседства, D — унарные потенциалы, V — бинарные потенциалы.
Рассмотрим модель со следующими ограничения:
- переменные дискретны и принимают значения из множества {1,…,K}, K ≥ 2,
- система соседства E - прямоугольная решетка,
- бинарные потенциалы V являются обобщенными потенциалами Поттса: .
В рамках этого задания требуется:
- реализовать алгоритм поиска конфигурации MRF, обладающей минимальной энергией (TRW или α-expansion),
- протестировать реализованный алгоритм на модельных задачах,
- применить реализованный алгоритм для задачи интерактивной сегментации изображений,
- сравнить алгоритмы TRW и α-expansion на задаче сегментации изображений.
MRF для интерактивной сегментации изображений
Задача сегментации изображения состоит в отнесении каждого пикселя изображения к одному из K классов. В интерактивном варианте пользователь отмечает часть пикселей, принадлежащих каждому классу. После этого требуется автоматически разметить оставшуюся часть изображения.
Для задачи сегментации марковское случайное поле строится, например, так:
- Каждая переменная соответствует пикселю изображения.
- Используется стандартная 4-х связная система соседства.
- Если пиксель p отнесен пользователем к классу k, то унарные потенциалы „разрешают“ переменной принимать только значение k:
. - Если пиксель p не отнесен пользователем ни к одному из классов, то унарные потенциалы принимают значения равные минус логарифму правдоподобия принадлежности пикселя цвета соответствующему классу: .
- Цветовые модели объектов можно восстановить по пикселям, размеченным пользователем, при помощи EM-алгоритма восстановления смеси нормальных распределений в пространстве Luv.
- В качестве парных потенциалов выбираются обобщенные потенциалы Поттса с коэффициентами α, делающими разрез более энергетически-выгодным, там где цвет изображения сильно меняется: , A ≥ 0, B ≥ 0, σ — параметры.
Вариант 1 : TRW
Задание
- Реализовать метод
- Реализовать EM-алгоритм обучения СММ при заданном числе состояний K.
- Реализовать алгоритм Витерби для сегментации сигнала при известных значениях параметров СММ
- Протестировать реализованные алгоритмы на модельных сигналах
- Рассчитать набор признаков для описания поведения мыши и на их основе найти 3 осмысленных поведенческих акта с помощью ЕМ-алгоритма обучения СММ, проинтерпретировать полученные поведенческие акты
- Наложить полученные поведенческие акты на видео с поведением
- Написать отчет в формате PDF с описанием всех проведенных исследований. Данный отчет должен, в частности, включать в себя графики сегментации модельных сигналов.
Спецификация реализуемых функций
Генерация выборки | |||||
---|---|---|---|---|---|
[X, T] = HMM_GENERATE(N, w, A, Mu, Sigmas) | |||||
ВХОД | |||||
| |||||
ВЫХОД | |||||
|
Рекомендации по выполнению задания
1. При разбиении MRF-решетки на вертикальные и горизонтальные цепочки формулировка несколько упрощается:
- Каждое ребро графа принадлежит только одному подграфу, а значит не нужно вводить двойственные переменные, соответствующие ребрам.
- Каждое вершина принадлежит только двум деревьям, а значит можно ввести |P|K двойственных переменных, соответствующих условиям , где hor и vert, обозначают горизонтальную и вертикальную цепочку, проходящую через p-ю вершину.
2. Поскольку двойственная функция вогнута и кусочно-линейна, оптимизировать ее можно при помощи алгоритма субградиентного подъема.
Каждый шаг метода субградиентного подъема состоит в пересчете значений двойственных переменных λ по следующему правилу:
где — субградиент в текущей точке, — параметр, отвечающий за длину сдвига.
В рамках данного практического задания рекомендуется использовать адаптивный метод выбора длины шага:
где — текущее значение двойственной функции, </tex>\text{Approx}_t</tex> — оценка оптимума двойственной функции, которую можно определять следующим способом:
где — лучшее на данный момент значение двойственной функции,
— параметры метода. Обычно .