Оценивание дискретных распределений при дополнительных ограничениях на вероятности некоторых событий (виртуальный семинар)
Материал из MachineLearning.
Содержание |
Общая постановка задачи
Задача состоит в восстановлении дискретной функции плотности вероятности (где - элементарные исходы, зависящие от времени , , где - дельта-функция Дирака. То есть, проще говоря, события разного вида происходят в случайные моменты времени ) ) при условии, что заданы условия на (где - суперпозиция финальных исходов (интегрированных по времени: )), - функция распределения вероятностей, - заданные вероятности, ).
Эмпирические частоты для заданы.
В качестве функционала качества предлагается использовать: , где - оценки на вероятности исходов, которые строятся из элементарных исходов интегрированием по времени и суперпозицией получившихся исходов; сумма берется по полному набору исходов (n - полное число исходов в ), - истинные значения вероятностей.
Частная постановка задачи
В частном случае: D=2,
В качестве функционала качества можно принять среднее среди функционалов качества для интегральных по времени исходов для деления всего времени на M одинаковых интервалов: , где ( - положительное бесконечно малое число введено, чтобы не учитывать два раза события на границе интервала). Для M=2 и D=2 множество превращается в множество типа , а множество функции плотности вероятности для двух интервалов превращается в , где - количества событий типа i и j, соответственно, которые произошли в интервале [0,T]. Известны результаты реализации этого случайного процесса, из которых можно построить эмпирическую плотность распределения .