Проверка статистических гипотез
Материал из MachineLearning.
|
Статистическая гипотеза (statistical hypothesys) — это определённое предположение о распределении вероятностей, лежащем в основе наблюдаемой выборки данных.
Проверка статистической гипотезы (testing statistical hypotheses) — это процесс принятия решения о том, что рассматриваемая статистическая гипотеза не противоречит наблюдаемой выборке данных.
Статистический тест или статистический критерий — строгое математическое правило, по которому принимается или отвергается статистическая гипотеза.
Методика проверки статистических гипотез
Пусть задана случайная выборка — последовательность объектов из множества . Предполагается, что на множестве существует некоторая неизвестная вероятностная мера .
Методика состоит в следующем.
- Формулируется нулевая гипотеза о распределении вероятностей на множестве . Гипотеза формулируется исходя из требований прикладной задачи. Чаще всего рассматриваются две гипотезы — основная или нулевая и альтернативная . Иногда альтернатива не формулируется в явном виде; тогда предполагается, что означает «не ». Иногда рассматривается сразу несколько альтернатив. В математической статистике хорошо изучено несколько десятков «наиболее часто встречающихся» типов гипотез, и известны ещё сотни специальных вариантов и разновидностей. Примеры приводятся ниже.
- Задаётся некоторая статистика (функция выборки) , для которой в условиях справедливости гипотезы выводится функция распределения и/или плотность распределения . Вопрос о том, какую статистику надо взять для проверки той или иной гипотезы, часто не имеет однозначного ответа. Есть целый ряд требований, которым должна удовлетворять «хорошая» статистика . Вывод функции распределения при заданных и является строгой математической задачей, которая решается методами теории вероятностей; в справочниках приводятся готовые формулы для ; в статистических пакетах имеются готовые вычислительные процедуры.
- Фиксируется уровень значимости — допустимая для данной задачи вероятность ошибки первого рода, то есть того, что гипотеза на самом деле верна, но будет отвергнута процедурой проверки. Это должно быть достаточно малое число . На практике часто полагают .
- На множестве допустимых значений статистики выделяется критическое множество наименее вероятных значений статистики , такое, что . Вычисление границ критического множества является строгой математической задачей, которая в большинстве практических случаев имеет готовое простое решение.
- Собственно статистический тест (статистический критерий) заключается в проверке условия:
- если , то делается вывод «данные противоречат нулевой гипотезе при уровне значимости ». Гипотеза отвергается.
- если , то делается вывод «данные не противоречат нулевой гипотезе при уровне значимости ». Гипотеза принимается.
Итак, статистический критерий определяется статистикой и критическим множеством , которое зависит от уровня значимости.
Замечание. Если данные не противоречат нулевой гипотезе, это ещё не значит, что гипотеза верна. Тому есть две причины.
- По мере увеличения длины выборки нулевая гипотеза может сначала приниматься, но потом выявятся более тонкие несоответствия данных гипотезе, и она будет отвергнута. То есть многое зависит от объёма данных; если данных не хватает, можно принять даже самую неправдоподобную гипотезу.
- Выбранная статистика может отражать не всю информацию, содержащуюся в гипотезе . В таком случае увеличивается вероятность ошибки второго рода — нулевая гипотеза может быть принята, хотя на самом деле она не верна. Допустим, например, что = «распределение нормально»; = «коэффициент асимметрии»; тогда выборка с любым симметричным распределением будет признана нормальной. Чтобы избегать таких ошибок, следует пользоваться более мощными критериями.
Типы критической области
Обозначим через значение, которое находится из уравнения , где — функция распределения статистики . Фактически, есть обратная к ней функция: . Значение называется также -квантилью распределения .
На практике, как правило, используются статистики с унимодальной (имеющей форму пика) плотностью распределения. Критические области (наименее вероятные значения статистики) соответствуют «хвостам» этого распределения. Поэтому чаще всего возникают критические области одного из трёх типов:
- Двусторонняя критическая область определяется двумя интервалами .
- Левосторонняя критическая область определяется интервалом .
- Правосторонняя критическая область определяется интервалом .
Ошибки первого и второго рода
- Ошибка первого рода или «ложная тревога» (англ. type I error, error, false positive) — когда нулевая гипотеза отвергается, хотя на самом деле она верна. Вероятность ошибки первого рода:
- Ошибка второго рода или «пропуск цели» (англ. type II error, error, false negative) — когда нулевая гипотеза принимается, хотя на самом деле она не верна. Вероятность ошибки второго рода:
Верная гипотеза | |||
---|---|---|---|
Результат применения критерия | верно принята | неверно отвергнута (Ошибка второго рода) | |
неверно отвергнута (Ошибка первого рода) | верно принята |
Свойства статистических критериев
Мощность критерия: — вероятность отклонить гипотезу , если на самом деле верна альтернативная гипотеза . Мощность критерия является числовой функцией от альтернативной гипотезы .
Несмещённый критерий: для всех альтернатив .
Состоятельный критерий: при для всех альтернатив .
Равномерно более мощный критерий. Говорят, что критерий с мощностью является равномерно более мощным, чем критерий с мощностью , если выполняются два условия:
- ;
- для всех рассматриваемых альтернатив , причём хотя бы для одной альтернативы неравенство строгое.
Типы статистических гипотез
- Простая гипотеза однозначно определяет функцию распределения на множестве . Простые гипотезы имеют узкую область применения, ограниченную критериями согласия (см. ниже). Для простых гипотез известен общий вид равномерно более мощного критерия (Теорема Неймана-Пирсона).
- Сложная гипотеза утверждает принадлежность распределения к некоторому множеству распределений на . Для сложных гипотез вывести равномерно более мощный критерий удаётся лишь в некоторых специальных случаях.
Типы статистических критериев
В зависимости от проверяемой нулевой гипотезы статистические критерии делятся на группы, перечисленные ниже по разделам.
Наряду с нулевой гипотезой, которая принимается или отвергается по результату анализа выборки, статистические критерии могут опираться на дополнительные предположения, которые априори предпологаются выполненными.
- Параметрические критерии предполагают, что выборка порождена распределением из заданного параметрического семейства. В частности, существует много критериев, предназначенных для анализа выборок из нормального распределения. Преимущество этих критериев в том, что они более мощные. Однако если выборка не удовлетворяет дополнительным предположениям, то вероятность ошибок (как I, так и II рода) резко возрастает. Прежде чем применять такие критерии, необходимо проверить дополнительную гипотезу о распределении с помощью критериев согласия.
- Непараметрические критерии не опираются на дополнительные предположения о распределении. В частности, к этому типу критериев относятся ранговые критерии.
Критерии согласия
Критерии согласия проверяют, согласуется ли заданная выборка с заданным фиксированным распределением, с заданным параметрическим семейством распределений, или с другой выборкой.
- Критерий Колмогорова-Смирнова
- Критерий хи-квадрат (Пирсона)
- Критерий омега-квадрат (фон Мизеса)
Критерии нормальности
Критерии нормальности — это выделенный частный случай критериев согласия. Нормально распределённые величины часто встречаются в прикладных задачах, что обусловлено действием закона больших чисел. Если про выборки заранее известно, что они подчиняются нормальному распределению, то к ним становится возможно применять более мощные параметрические критерии. Проверка нормальность часто выполняется на первом шаге анализа выборки, чтобы решить, использовать далее параметрические методы или непараметрические. В справочнике А. И. Кобзаря приведена сравнительная таблица мощности для 21 критерия нормальности.
Критерии однородности
Критерии однородности предназначены для проверки нулевой гипотезы о том, что две выборки (или несколько) взяты из одного распределения, либо их распределения имеют одинаковые значения математического ожидания, дисперсии, или других параметров.
Критерии тренда, стационарности и случайности
Критерии тренда и случайности предназначены для проверки нулевой гипотезы об отсутствии зависимости между выборочными данными и номером наблюдения в выборке. Они часто применяются в анализе временных рядов, в частности, при анализе регрессионных остатков.
Критерии выбросов
Критерии дисперсионного анализа
Критерии корреляционного анализа
Критерии регрессионного анализа
Литература
- Вероятность и математическая статистика: Энциклопедия / Под ред. Ю.В.Прохорова. — М.: Большая российская энциклопедия, 2003. — 912 с.
- Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.
Ссылки
- Statistical hypothesis testing — статья в англоязычной Википедии.