Критерий Стьюдента

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

t-Критерий Стьюдента — общее название для статистических тестов), в которых статистика критерия имеет распределение Стьюдента. Наиболее часто t-критерии применяются для проверки равенства средних значений в двух нормальных выборках.

Все разновидности критерия Стьюдента являются параметрическими и основаны на дополнительном предположении о нормальности выборки данных. Поэтому перед применением критерия Стьюдента рекомендуется выполнить проверку нормальности.

Сравнение выборочного среднего с заданным значением

Задана выборка x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R}.

Дополнительное предположение: выборка нормальна.

Нулевая гипотеза H_0:\; \bar x = \mu (среднее равно \mu).

Статистика критерия:

\displaystyle t = \frac{(\bar x - \mu)\sqrt{m}}{s}

имеет распределение Стьюдента с m-1 степенями свободы, где

\displaystyle \bar x = \frac1m \sum_{i=1}^m x_i — выборочное среднее,
\displaystyle s^2  = \frac1{m-1} \sum_{i=1}^m \left( x_i - \bar x \right)^2 — выборочная дисперсия.

Критерий (при уровне значимости \alpha):

  • против альтернативы H_1:\; \bar x \neq \mu
если  |t| > t_{\alpha/2} , то нулевая гипотеза отвергается;
  • против альтернативы H'_1:\; \bar x < \mu
если  t < t_{\alpha} , то нулевая гипотеза отвергается;
  • против альтернативы H''_1:\; \bar x > \mu
если  t > t_{1-\alpha} , то нулевая гипотеза отвергается;

где  t_{\alpha} есть \alpha-квантиль распределения Стьюдента с m-1 степенями свободы.

Сравнение двух выборочных средних при известных дисперсиях

Заданы две выборки x^m = (x_1,\ldots,x_m),\; x_i \in \mathbb{R};\; y^n = (y_1,\ldots,y_n),\; y_i \in \mathbb{R}.

Дополнительные предположения:

  • обе выборки нормальны;
  • значения дисперсий  \sigma^2_x,\, \sigma^2_y известны априори; это означает, что дисперсии были оценены заранее не по этим выборкам, а исходя из какой-то другой информации; случай, когда такого источника информации нет и дисперсии приходится оценивать по самим выборкам, описан ниже.

Нулевая гипотеза H_0:\; \bar x = \bar y (средние в двух выборках равны).

Статистика критерия:

z = (\bar x - \bar y) \left( \frac{\sigma^2_x}{m} +\frac{\sigma^2_y}{n} \right)^{-1/2},

имеет стандартное нормальное распределение \mathcal{N}(0,1), где

\displaystyle \bar x = \frac1m \sum_{i=1}^m x_i,\; \bar y = \frac1n \sum_{i=1}^n y_i — выборочные средние.

Критерий (при уровне значимости \alpha):

  • против альтернативы H_1:\; \bar x \neq \bar y
если  |z| > \Phi_{\alpha/2} , то нулевая гипотеза отвергается;
  • против альтернативы H'_1:\; \bar x < \bar y
если  z < \Phi_{\alpha} , то нулевая гипотеза отвергается;
  • против альтернативы H''_1:\; \bar x > \bar y
если  z > \Phi_{1-\alpha} , то нулевая гипотеза отвергается;

где  \Phi_{\alpha} есть \alpha-квантиль стандартного нормального распределения.

Сравнение двух выборочных средних при неизвестных равных дисперсиях

Сравнение двух выборочных средних при неизвестных неравных дисперсиях

Сравнение двух выборочных средних в связанных выборках

История

Критерий был разработан Уильямом Госсеттом для оценки качества пива на пивоваренных заводах Гиннесса в Дублине (Ирландия). В связи с обязательствами перед компанией по неразглашению коммерческой тайны (руководство Гиннесса считало таковой использование статистического аппарата в своей работе), статья Госсетта вышла в 1908 году в журнале «Биометрика» под псевдонимом «Student» (Студент).


Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006.

Ссылки

Личные инструменты