Статистический анализ данных (курс лекций, К.В.Воронцов)/2015/1

Материал из MachineLearning.

Перейти к: навигация, поиск

Ниже под обозначением X^n, \;\; X_i \sim p\cdot N(\mu,\sigma^2)+ \left(1-p\right)\cdot U\left[-a,b\right] понимается выборка объёма n из смеси нормального N(\mu,\sigma^2) и равномерного U\left[-a,b\right] распределений с весами p и 1-p соответственно (при генерации каждой выборки используется случайный датчик — если его значение не превосходит p, то добавляем в выборку элемент, взятый из нормального распределения, иначе — элемент, взятый из равномерного).

Анализ поведения схожих критериев

Требуется исследовать поведение указанной пары статистических критериев, подходящих для решения одной и той же задачи, сравнить мощность и достигаемые уровни значимости и сделать выводы о границах применимости критериев. Необходимо для каждого из критериев построить графики зависимости достигаемых уровней значимости и оценок мощностей от параметров, и показать, в каких областях изменения параметров предпочтительнее использовать тот или иной критерий. Для получения более гладких графиков рекомендуется применять оба критерия к одним и тем же выборкам, а не генерировать их отдельно для каждого критерия.

  • X^n, \;\; X_i\sim Ber(p);
    H_0\,:\, p=p_0,
    H_1\,:\, p\neq p_0;
    p=0.01\,:\,0.01\,:\,0.5, \;\; n=5\,:\,1\,:\,70.
Сендерович: p_0=\frac1{2}, сравнить z-критерии в версиях Вальда и множителей Лагранжа.
Лисяной: p_0=\frac1{4}, сравнить z-критерий (в версии множителей Лагранжа) и точный критерий.

Анализ устойчивости критериев к нарушению предположений

Требуется исследовать поведение указанного критерия в условиях нарушения лежащих в его основе предположений. Оценить мощность и достигаемый уровень значимости критерия при различных значениях параметров, сделать выводы об устойчивости.


Ссылки

Личные инструменты