Участник:Gukov/Песочница
Материал из MachineLearning.
Содержание |
Введение
Постановка математической задачи
Задача численного интегрирования состоит в приближенном нахождении значения интеграла
где - заданная и интегрируемая на функция. В качестве приближенного значения рассматривается число
где - числовые коэффициенты и - точки отрезка , . Приближенное равенство
называется квадратурной формулой, а сумма вида (2) - квадартурной суммой. Точки называются узлами квадратурной формулы. Разность
называется погрешностью квадратурной формулы. Погрешность зависит как от расположения узлов, так и от выбора коэффициентов.
Изложение метода
Общие сведения
Предположим, что для вычисления интеграла (1) отрезок разбит на равных отрезков длины и на каждом частичном отрезке применяется одна и та жа квадратурная формула. Тогда исходный интеграл заменяется некоторой квадратурной суммой , причем возникающая погрешность зависит от шага сетки . Для некоторых квадратурных формул удается получить разложение погрешности по степеням . Предположим, что для данной квадратурной суммы существует разложение:
- ,
где и коэффициенты не зависят от . При этом величины предполагаются известными. Теперь предположим:
Чтобы избавиться от степени , составляющей ошибку (ибо среди всех слагаемых, составляющих ошибку, слагамое при является наибольшим) вычислим величину . Имеем:
Отсюда
то есть имеем более точное приближение к интегралу .
Таким образом, рекуррентную формулу можно записать в виде:
Заметим, что - величина, на которую мы делим размер шага при каждом новом вычислении . Разумно положить , т.к. большие значения могут вызвать резкое увеличение количества вычислений.
Для наглядности представим процесс экстраполирования следующей таблицей: