Участник:Anastasiya/Черновики
Материал из MachineLearning.
Список проектов
Шаблон описания проекта — научной статьи
- Название: Название, под которым статья подается в журнал.
- Задача: Описание или постановка задачи. Желательна постановка в виде задачи оптимизации (в формате argmin). Также возможна ссылка на классическую постановку задачи.
- Данные: Краткое описание данных, используемых в вычислительном эксперименте, и ссылка на выборку.
- Литература: Список научных работ, дополненный 1) формулировкой решаемой задачи, 2) ссылками на новые результаты, 3) основной информацией об исследуемой проблеме.
- Базовой алгоритм: Ссылка на алгоритм, с которым проводится сравнение или на ближайшую по теме работу.
- Решение: Предлагаемое решение задачи и способы проведения исследования. Способы представления и визуализации данных и проведения анализа ошибок, анализа качества алгоритма.
- Новизна: Обоснование новизны и значимости идей (для редколлегии и рецензентов журнала).
- Авторы: эксперт, консультант.
Задача 1
- Название: Классификация видов деятельности человека по измерениям фитнес-браслетов.
- Задача: По измерениям акселерометра и гироскопа требуется определить вид деятельности рабочего. Предполагается, что временные ряды измерений содержат элементарные движения, которые образуют кластеры в пространстве описаний временных рядов. Характерная продолжительность движения – секунды. Временные ряды размечены метками вида деятельности: работа, отдых. Характерная продолжительность деятельности – минуты. Требуется по описанию временного ряда и кластера восстановить вид деятельности.
- Данные: Временные ряды акселерометра WISDM (Временной ряд (библиотека примеров), раздел Accelerometry).
- Литература:
- Карасиков М.Е., Стрижов В.В. Классификация временных рядов в пространстве параметров порождающих моделей // Информатика и ее применения, 2016. [URL]
- Кузнецов М.П., Ивкин Н.П. Алгоритм классификации временных рядов акселерометра по комбинированному признаковому описанию // Машинное обучение и анализ данных. 2015. T. 1, № 11. C. 1471 - 1483. [URL]
- Исаченко Р.В., Стрижов В.В. Метрическое обучение в задачах многоклассовой классификации временных рядов // Информатика и ее применения, 2016, 10(2) : 48-57. [URL]
- Задаянчук А.И., Попова М.С., Стрижов В.В. Выбор оптимальной модели классификации физической активности по измерениям акселерометра // Информационные технологии, 2016. [URL]
- Motrenko A.P., Strijov V.V. Extracting fundamental periods to segment human motion time series // Journal of Biomedical and Health Informatics, 2016, Vol. 20, No. 6, 1466 - 1476. [URL]
- Ignatov A., Strijov V. Human activity recognition using quasiperiodic time series collected from a single triaxial accelerometer // Multimedia Tools and Applications, 2015, 17.05.2015 : 1-14. [URL]
- Базовой алгоритм: Базовый алгоритм описан в работах [Карасиков, Стрижов: 2016] и [Кузнецов, Ивкин: 2014].
- Решение: Найти оптимальный способ сегментации и оптимальное описание временного ряда. Построить метрическое пространство описаний элементарных движений.
- Новизна:: Соединение двух характеристических времен описания жизни человека, комбинированная постановка задачи.
- Авторы: В.В. Стрижов, М.П. Кузнецов, П.В. Левдик.
Задача 2
- Название: Выбор признаков в задаче распознавания активности областей головного мозга.
- Задача: Решается задача восстановления координат конечности испытуемого на основе измерений активности головного мозга. КАждому обхъекты выборки, описываемому трехиндексной матрцей пространственных, временных и частотных признаков, требуется сопоставить 3D координаты конечности испытуемого.
- Постановка задачи и описание процесса построения выборки
- Данные: Описание эксперимента и ссылка на данные
- Литература:
- Andrey Eliseyev and Tetiana Aksenova. Penalized multi-way partial least squares for smooth
trajectory decoding from lectrocorticographic (ecog). PLoS ONE, 11(5):e0154878, 2016.
- Andrey Eliseyev, Cecile Moro, Thomas Costecalde, Napoleon Torres, Sadok Gharbi, Corinne Mestais, Alim Louis Benabid, and Tatiana Aksenova. Iterative n-way partial least squares for a binary self-paced brain-computer interface in freely moving animals. J. Neural EngJournal of Neural Engineering, 8, 2011.
- Aleksandr Katrutsa and Vadim Strijov. Comprehensive study of feature selection methods
to solve multicollinearity problem according to evaluation criteria. Expert Systems with Applications, 2017.
- Базовой алгоритм: NPLS или другие модификации [Eliseyev 2016, Eliseev 2011]
- Решение: Предлагается сравнить базовые методы с методом [Katrutsa 2017]
- Новизна: Алгоритм выбора признаков [Katrutsa 2017] был предложен для двухиндексных данных и при использовании тензорных (многоиндексных) признаковых описаний требует модификации.
- Авторы: эксперт, консультант.