Участник:Айнагуль Джумабекова/Песочница
Материал из MachineLearning.
≈
Содержание |
Введение
Постановка математической задачи
Численное дифференцирование применяется, если функцию трудно или невозможно продифференцировать аналитически - например, если она задана таблицей. Оно нужно также при решении дифференциальных уравнений при помощи разностных методов.
Изложение метода
При численном дифференцировании функцию аппроксимируют легко вычисляемой функцией и приближенно полагают . При этом можно использовать различные способы аппроксимации.
Интерполирование полиномами Лагранжа
Рассмотрим неравномерную сетку и обозначим за , шаги этой сетки. В качества примера получим формулы численного дифференцирования, основанные на использовании многочлена Лагранжа , построенного для функции по трем точкам . Многочлен имеет вид
Отсюда получим
Это выражение можно принять за приближенное значение в любой точке ∈ . Его удобнее записать в виде , где , .
В частности, при получим , И если сетка равномерна, , то приходим к центральной разностной производной, . При использовании интерполяционного многочлена первой степени точно таким образом можно получить односторонние разностные производные и . Далее вычисляя вторую производную многочлена , получим приближенное выражение для при ∈:
≈
На равномерной сетке это выражение совпадает со второй разностной производной . Ясно, что для приближенного вычисления дальнейших производных уже недостаточно многочлена , надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.