Ковариационный анализ

Материал из MachineLearning.

Перейти к: навигация, поиск

Ковариационный анализ - совокупность методов математической статистики, относящихся к анализу моделей зависимости среднего значения некоторой случайной величины Y одновременно от набора количественных факторов X и неколичественных факторов F. По отношению к Y переменные X называются сопутствующими. Факторы F задают сочетания условий качественной природы, при которых были получены наблюдения Y и X, и описываются с помощью так называемых индикаторных переменных, причем среди сопутствующих и индикаторных переменных могут быть как случайные, так и неслучайные (контролируемые в эксперименте).

Если случайная величина Y является вектором, то говорят о многомерном ковариационном анализе.

Постановка задачи

Основные теоретические и прикладные проблемы ковариационного анализа относятся к линейным моделям. В частности, если анализируются n наблюдений Y_1,...,Y_n с p сопутствующими переменными (X=(x^{(1)},...,x^{(p)})), k возможными типами условий эксперимента (F=(f_1,...,f_k)), то линейная модель соответствующего ковариационного анализа задается уравнением:

Y_i=\sum\limits_{j=1}^k{f_{ij}\theta_j} + \sum\limits_{j=1}^p{\beta_s(f_i)x_i^{(1)} + \eps_i(f_i)}

где i=1,...,n, индикаторные переменные f_{ij} равны 1, если j-е условие эксперимента имело место при наблюдении Y_i, и равны 0 в противном случае. Коэффициенты \theta_j определяют эффект влияния j-го условия, x_i^s - значение сопутствующей переменной x^{(s)}, при котором получено наблюдение Y_i. \beta_s(f_i) - значения соответствующих коэффициентов регрессии Y по x^{(s)}, \eps_i(f_i) - случайные ошибки с нулевым математическим ожиданием.

Основное назначение ковариационного анализа - использование в построении статистических оценок \theta_1,...,\theta_k; \beta_1,...,\beta_p и статистических критериев для проверки различных гипотез относительно значений этих параметров. Если в модели постулировать априори \beta_1=...=\beta_p=0, то получится модель дисперсионного анализа, если же исключить влияние неколичественных факторов (положить \theta_1=...=\theta_k=0), то получится модель регрессионного анализа.

Литература

  1. Кендалл М.Дж., Стьюарт А. Многомерный статистический анализ и временные ряды. — М., 1976.
  2. Шеффе Г. Дисперсионный анализ. — М., 1980.
Личные инструменты