Ковариационный анализ
Материал из MachineLearning.
Ковариационный анализ - совокупность методов математической статистики, относящихся к анализу моделей зависимости среднего значения некоторой случайной величины одновременно от набора количественных факторов и неколичественных факторов . По отношению к переменные называются сопутствующими. Факторы задают сочетания условий качественной природы, при которых были получены наблюдения и , и описываются с помощью так называемых индикаторных переменных, причем среди сопутствующих и индикаторных переменных могут быть как случайные, так и неслучайные (контролируемые в эксперименте).
Если случайная величина является вектором, то говорят о многомерном ковариационном анализе.
Постановка задачи
Основные теоретические и прикладные проблемы ковариационного анализа относятся к линейным моделям. В частности, если анализируются наблюдений с сопутствующими переменными , возможными типами условий эксперимента , то линейная модель соответствующего ковариационного анализа задается уравнением:
где , индикаторные переменные равны 1, если j-е условие эксперимента имело место при наблюдении , и равны 0 в противном случае. Коэффициенты определяют эффект влияния j-го условия, - значение сопутствующей переменной , при котором получено наблюдение . - значения соответствующих коэффициентов регрессии по , - случайные ошибки с нулевым математическим ожиданием.
Основное назначение ковариационного анализа - использование в построении статистических оценок ; и статистических критериев для проверки различных гипотез относительно значений этих параметров. Если в модели постулировать априори , то получится модель дисперсионного анализа, если же исключить влияние неколичественных факторов (положить ), то получится модель регрессионного анализа.
Литература
- Кендалл М.Дж., Стьюарт А. Многомерный статистический анализ и временные ряды. — М., 1976.
- Шеффе Г. Дисперсионный анализ. — М., 1980.