EM-алгоритм с последовательным добавлением компонент (пример)
Материал из MachineLearning.
|
EM-алгоритм с последовательным добавлением компонент (пример) — общий метод нахождения функции плотности распределения объектов. Предполагается, что она имеет вид смеси распределений. В данной статье рассматривается гауссовское распредение выборки, количество гауссианов произвольно.
Постановка задачи
Задана выборка , в которой = - множество объектов, = - множество ответов. Предполагается, что объекты имеют плотность распределения , представимую в виде смеси гауссиан с параметрами и .
Задача разделения смеси заключается в том, чтобы, имея выборку случайных и независимых наблюдений из смеси оценить вектор параметров доставляющий максимум функции правдоподобия
Алгоритм отыскания оптимальных параметров
Оптимальные параметры отыскиваются последовательно с помощью EM-алгоритма. Идея заключается во введении вспомогательного вектора скрытых переменных , обладающего двумя замечательными свойствами. С одной стороны, он может быть вычислен, если известны значения вектора параметров , с другой стороны, поиск максимума правдоподобия сильно упрощается, если известны значения скрытых переменных. EM-алгоритм состоит из итерационного повторения двух шагов. На E-шаге вы- числяется ожидаемое значение (expectation) вектора скрытых переменных по те- кущему приближению вектора параметров . На М-шаге решается задача максими- зации правдоподобия (maximization) и находится следующее приближение вектора по текущим значениям векторов и . Если число компонент смеси заранее не известно, то применяется EM-алгоритм с последовательным добавлением компонент. Если при каком-либо число неправильно классифицированных объектов превышает допустимое, то увеличивается и повторяется EM()
- Вход:
Выборка ; - максимальный допустимый разброс правдоподобия объектов; - минимальная длина выборки, по которой можно восстановить плотность; - параметр критерия останова;
- Выход:
- число компонент смеси;
- Алгоритм
1. начальное приближение - одна компонента:
2. для всех
3. выделить объекты с низким правдоподобием
4. Если то выход из цикла по
5. Начальное приближение для компоненты:
6.
Смотри также
Литература
- К. В. Воронцов, Лекции по статистическим (байесовским) алгоритмам классификации