Классификация пациентов с сердечно-сосудистыми заболеваниями (отчет)

Материал из MachineLearning.

Перейти к: навигация, поиск

Введение в проект

Описание проекта

Цель проекта

Цель проекта - классификация пациентов с подозрением на сердечно-сосудистые заболевания по группам риска.

Обоснование проекта

Полученные результаты могут быть использованы для предварительной диагностики заболевания у пациентов.

Описание данных

Дан список 100 пациентов с указанием их группы риска(по экспертной оценке) и результатов их анализов по 20 параметрам.

Критерии качества

Критерием качества является общее количество ошибок классификации. При этом не допускается более 1 ошибки для пациентов групп риска A1(уже прооперированные больные) и A3(больные с высокой вероятностью заболевания).

Требования к проекту

Средний модуль отклонения для нашего алгоритма должен быль меньше, чем для скользящего среднего за предыдущий месяц.

Выполнимость проекта

Прогнозирование покупок тоаров в празничные дни и во время промо-акций является отдельной задачей и в данном проекте не рассматривается.

Используемые методы

Предполагается использовать линейные алгоритмы классификации, в частности SVM.

Постановка задачи

Описание алгоритмов

Обзор литературы

Базовые предположения

Математическое описание

Варианты или модификации

Описание системы

  • Ссылка на файл system.docs
  • Ссылка на файлы системы

Отчет о вычислительных экспериментах

Визуальный анализ работы алгоритма

Анализ качества работы алгоритма

Анализ зависимости работы алгоритма от параметров

Отчет о полученных результатах

Список литературы

Данная статья является непроверенным учебным заданием.
Студент: Участник:Максим Панов
Преподаватель: Участник:В.В. Стрижов
Срок: 15 декабря 2009

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты