Теория Валианта

Материал из MachineLearning.

Перейти к: навигация, поиск
Данная статья является непроверенным учебным заданием.
Студент: Участник:DmitryKonstantinov
Преподаватель: Участник:Константин Воронцов
Срок: 8 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Теория вероятно почти корректного обучения (теория Валианта, probably approximately correct, PAC-learning) — теория, предложенная Лесли Валиантом в 1984 году для математического анализа машинного обучения. Работа Валианта акцентирует внимание на том, что проблематика вычислительного обучения тесно связана также и с вопросам вычислительной сложности алгоритмов.

В теории вероятно почти корректного обучения обучаемый (learner) получает некоторый набор примеров и должен выбрать некоторую функцию (гипотезу) из определенного класса функций. Цель обучаемого состоит в том, чтобы с высокой вероятностью выбранная функция была, в некотором смысле, «похожа» на истинную гипотезу. Обучаемый должен быть эффективным (то есть использовать в процессе работы приемлемое количество вычислительных ресурсов).

Содержание

Вероятно почти корректное обучение

Основные понятия

  • Обучаемый (learner) — объект, участвующий в процессе обучения. В данном контексте обучаемый — алгоритм.
  • Объекты на которых выполняется обучение назовём примерами. Поскольку нам будет важна вычислительная сложность, будем считать, что примеры задаются некоторым описанием — булевым вектором.
  • X_n — множество примеров с описанием длины n.
  • X = \bigcup_{n \geq 1} X_n — пространство примеров (instance space), множество всех возможных примеров.
  • D: X_n \rightarrow [0,1] — (неизвестное) вероятностное распределение на пространстве примеров. x ~ D — означает, что x - случайная величина с распределением D.
  • Каждый пример имеет одну пометку, для простоты будем считать, что множество пометок состоит из двух элементов: {0,1}. Концепция(concept) — это функция, отображающая примеры на пометки. F = \bigcup_{n \geq 1} F_n — семейство концепций, подмножество множества всех булевых функций, определенных на множестве X.
  • f \in F_n — целевая концепция: то, что мы ищем в процессе обучения.
  • Гипотеза h — некоторая булева функция на множестве X_n, которую выдает обучаемый. Гипотеза является предсказанием целевой концепции.
  • Ошибка гипотезы. err_{f,D}(h) — вероятность того, что гипотеза h не совпадает с целевой концепцией f на случайном значении x ~ D: err_{f,D}(h) = Pr_{x \sim D}[f(x) \neq h(x)].

Пример

Объем обучающей выборки (Sample complexity)

Определение, теоремы

Вычислительная сложность обучения

Связь PAC-learning с классами сложности (P \neq NP), математической криптографией (односторонние функции, криптосистемы)

Ссылки

  1. Valiant L.G. A theory of the learnable // Communications of the ACM. — 1984 T. 27. — С. 1134-1142.
Личные инструменты