Математические методы распознавания образов (курс лекций, В.В.Китов)

Материал из MachineLearning.

Версия от 11:18, 20 ноября 2024; Victor Kitov (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Содержание

Курс посвящен алгоритмам машинного обучения (machine learning), которые сами настраиваются на известных данных, выделяя их характерную структуру и взаимосвязи между ними, для их прогнозирования, анализа, компактного описания и визуализации. Основной акцент курса сделан на задачах предсказания дискретных величин (классификация) и непрерывных величин (регрессия), хотя в курсе также рассматриваются смежные области - эффективное снижение размерности пространства, выделение наиболее значимых признаков для предсказания, методы оценивания и сравнения вероятностных распределений, рекомендательные системы и планирование экспериментов.

Лектор: Виктор Китов

Семинарист: Евгений Соколов

О курсе

Курс читается студентам 3 курса кафедры «Математические методы прогнозирования» ВМиК МГУ, магистрам, зачисленным на эту кафедру, и не проходивших ранее аналогичных курсов, а также для всех желающих. На материал данного курса опираются последующие кафедральные курсы.

По изложению, рассматриваются математические основы методов, лежащие в их основе предположения о данных, взаимосвязи методов между собой и особенности их практического применения.

Курс сопровождается семинарами, раскрывающими дополнительные темы курса и отрабатывающими навыки практического применения рассматриваемых методов. Практическое использование методов машинного обучения в основном будет вестись с использованием языка python и соответствующих библиотек для научных вычислений.

От студентов требуются знания линейной алгебры, математического анализа, теории вероятностей, математической статистики и методов оптимизации. Практические задания должны выполняться с использованием языка Python и его научных библиотек.

Экзамен

Процедура экзамена и вопросы

Программа курса

Осенний семестр

Введение в машинное обучение

Метод ближайших центроидов и K ближайших соседей

Сложность моделей. Подготовка данных

Метрики близости

Оптимизация метода K ближайших соседей

Линейная регрессия и ее обобщения

Метод стохастического градиентного спуска

Линейная классификация

Оценивание классификаторов

Метод опорных векторов

+вывод двойственной задачи для классификации опорных векторов

Обобщения методов через ядра Мерсера

+начало доказательства, что ridge-регрессия допускает обобщение через ядра

Решающие деревья

Ансамбли прогнозирующих алгоритмов. Смещение и дисперсия моделей

Бустинг

Усовершенствования бустинга

+LogitBoost

Метод главных компонент

+Свойства симметричных матриц, положительно определенные матрицы, векторное дифференцирование.

Весенний семестр

Байесовское решающее правило. Примеры генеративных моделей

Отбор признаков

Выпуклые функции

Стандартные распределения

Смеси распределений

EM-алгоритм

Разделение смеси многомерных нормальных распределений

Тематические модели

(обновлено 01.04.21)

Ядерно-сглаженные оценки плотности

Кластеризация

(обновлено 10.04.2021)

Обнаружение аномалий

Сингулярное разложение

Доказательство основных свойств.

Рекомендательные системы

Активное обучение

Частичное обучение

Нелинейное снижение размерности

Метод t-SNE

Рекомендуемая литература

Образовательные ресурсы по Python

Личные инструменты