Адаптивный линейный элемент

Материал из MachineLearning.

Перейти к: навигация, поиск
Данная статья является непроверенным учебным заданием.
Студент: Участник:Головин Антон
Преподаватель: Участник:Константин Воронцов
Срок: 8 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Адаптивный линейный элемент(Адаптивный линейный нейрон или ADALINE) - частный случай линейного классификатора или искусственной нейронной сети с одним слоем. Был предложен Видроу и Хоффом в 1960 году, развивая математическую модель нейрона МакКаллока–Питтса.

Общая схема работы ADALINE

Схема работы ADALINE несколько напоминает работу биологического нейрона:

модель работы нейрона
модель работы нейрона[1]

На вход подаётся вектор импульсов Xn ,состоящий из n числовых признаков. Внутри нейрона импульсы складываются с некоторыми весами wj, j = 1..n и, если суммарный импульс S =\textstyle\sum_{j=1}^n w_jx_j превысит порог активации w0, то нейрон возбуждается и выдаёт некоторое значение Y(x) = φ(S - w0).




Личные инструменты