Выборочный контроль качества

Материал из MachineLearning.

Перейти к: навигация, поиск

Введение

Статистический контроль качества продукции широко применяется в промышленности индустриально развитых стран. Большая роль статистических методов в управлении производством и в первую очередь качества продукции объясняется целым рядом моментов, из которых выделим два.
Во-первых, статистический контроль – база научно обоснованного получения, накопления и обработки информации о качестве продукции, состоянии технических процессов и производства.
Во-вторых, статистический контроль позволяет построить конкретные производственные отношения между изготовителями и потребителями продукции, обеспечивая достоверность и доказательность принимаемых решений, затрагивающих интересы обоих сторон.
По способу отбора изделий, подвергаемых контролю качества, различают тотальный (стопроцентный) и выборочный контроль.
Для сокращения затрат на контроль в крупносерийном и массовом производстве больших партий изделий (генеральной совокупности) контролю подвергают только часть партии - выборку. Очевидно, что выборка должно производиться случайным образом.
Если уровень качества изделий в выборке соответствует установленным требованиям, то считают, что всю партию можно принять как годную. В противном случае партия бракуется.
В ряде случаев вся партия может быть ошибочно забракована, и это считается ошибкой первого рода, или риском поставщика. Ошибка противоположного свойства называется ошибкой второго рода или риском заказчика. Обе ошибки выражаются в процентах и оговариваются при совершении торговых сделок.

Одноступенчатый план

Одноступенчатый план (n,c):



Данная статья является непроверенным учебным заданием.
Студент: Участник:Аманжолов Рустем
Преподаватель: Участник:Vokov
Срок: 6 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты