Алгебра над алгоритмами и эвристический поиск закономерностей
Материал из MachineLearning.
Руководитель спецсеминара: к.ф.-м.н. Дьяконов Александр Геннадьевич
|
Работа на спецсеминаре
Работа на спецсеминаре состоит из двух направлений:
- Теоретическое. Проводится в рамках алгебраического подхода к решению задач распознавания. Суть подхода: на алгоритмах, которые решают задачи обработки и анализа данных, специальным образом вводятся алгебраические операции. Например, можно складывать алгоритмы (получается опять алгоритм), умножать и т.д. Доказано (Ю.И. Журавлёвым), что среди получаемых алгебраических выражений над «естественными» алгоритмами есть высокоэффективные алгоритмы. На спецсеминаре рассматриваются вопросы: как их строить, анализировать, реализовывать на ЭВМ и т.д. и т.п. Данное направление представляет особую ценность студентам, которые хотят получить самостоятельные результаты в науке и продолжить обучение в аспирантуре.
- Прикладное. Решаются реальные прикладные задачи анализа данных (data mining). Например, классификация сигналов головного мозга, классификация сигналов-показаний работы механизмов, настройка спам-фильтров, автоматическая рубрикация текстов, прогнозирование финансовых временных рядов. От студентов требуется желание глубоко понять задачу (данные и скрытые в них закономерности), умение быстро осваивать новые методы (в незнакомой области), хорошо программировать, выдвигать гипотезы и фантазировать (последнее очень важно).
Участники спецсеминара
Год выпуска | Участники |
---|---|
Аспирант, 2010 |
Карпович Павел
|
2012 |
|
2010 |
Ахламченкова Ольга
Одинокова Евгения
|
2009 |
Власова Юлия
Логинов Вячеслав
Фёдорова Валентина
Чучвара Алексндра (бакалавр)
|
2008 |
Ломова Дарья
Вершкова Ирина
|
2007 |
Кнорре Анна
Карпович Павел
Сиваченко Евгений
|
2006 |
Ховратович (Курятникова) Татьяна
Мошин Николай
|
2005 |
Каменева Наталья
Силкин Леонид
|
Решаемые прикладные задачи
- Прогнозирование временных рядов По характеристикам процесса в прошлом предсказать поведение в будущем. Знание о прошлом может быть неполным или ошибочным.
- Классификация технических сигналов и сигналов головного мозга По описанию изменения некоторой характеристики процесса необходимо определить её класс.
- Фильтрация спама Настроить спам фильтр на некотором универсальном обучающем множестве (данные спам-ловушек) так, чтобы он хорошо работал на компьютере конкретного пользователя (без дополнительной донастройки).
- Иерархическая классификация текстов Написать алгоритм автоматической категоризации документов (отнесения к каталогам иерархической структуры).
- Ранжирование документов на основе обучающего множества Написать алгоритм, который оценивает релевантность поискового запроса.