Анализ мультиколлинеарности (пример)
Материал из MachineLearning.
Мультиколлинеарность — тесная корреляционная взаимосвязь между отбираемыми для анализа факторами, совместно воздействующими на общий результат, которая затрудняет оценивание регрессионных параметров.
Содержание |
Постановка задачи
Задана выборка откликов и признаков. Рассматривается множество линейных регрессионных моделей вида:
Предполагается, что вектор регрессионных невязок имеет нулевое математическое ожидание и дисперсию
.
Требуется создать инструмент исследования мультиколлинеарности признаков (методики VIF, Belsley) и исследовать устойчивость модели на зависимость параметров модели от дисперсии случайной переменной и выбросов в выборке.
Описание алгоритма
Фактор инфляции дисперсии (VIF)
Дисперсия :
Первая дробь связана с дисперсией невязок и дисперсией векторов признаков. Вторая — фактор инфляции дисперсии, связанный с корреляцей данного признака с другими:
где — коэффициент детерминации j-го признака относительно остальных:
Равенство единице фактора инфляции дисперсии говорит об ортогональности вектора значений признака остальным. Если значение велико, то
— мало, то есть
близко к 1. Большие значения фактора инфляции дисперсии соответствуют почти линейной зависимости j-го столбца от остальных.
Методика Belsley, Kuh, и Welsch (BKW)
Диагностика Коллинеарности BKW основана на двух элементах, относящихся к матрице данных
использующейся в линейной регрессии
: индексы состояния(the scaled condition indexes) и the variance-decomposition proportions. Оба этих диагностических элемента могут быть получены из сингулярного разложения (SVD) матрицы
:
, где
и
- диогональная с неотрицательными элементами
называющимися сингулярными значениями
. Индексы состояния это:
,
для всех
. Большое значение
указывает на зависимость близкую к линейной между признаками и чем больше
тем сильнее зависимость. Дисперсионные соотношения разложения проистекают из того факта, что используя SVD ковариационная матрица метода наименьших квадратов
может записана как:
(3)
где это дисперсия возмущения
. Таким образом дисперсия k-го регрессионного коэффициента
это k-й диогональный элемент (3):
(4)
где - сингулярные значения
и
.
Определим
-е дисперсионное соотношение как долю дисперсии k-го регрессионного коэффициента связанная с j-м компонентом его разложения (4). Доля считается как:
,
,
Дисперсионное соотношение:
,
Данные удобно представить в виде таблицы:
,
,
,
Condition index | ||||
---|---|---|---|---|
| | | ... | |
| | ... | ... | |
. | . | . | . | |
. | . | . | . | |
. | . | . | . | |
| | | ... | |
Перед использованием BKW необходимо отмасштабировать матрицу . Стандартно применяется приведение столбцов к одинаковой длинне(норму). Будем рассматривать отмасштабированные индексы соотношений
:
,
Алгоритм BKW :
1. Создание матрицы данных .
2. Приведение столбцов матрицы к одинаковой длинне.
3. Вычисление индексов соотношений и дисперсионных соотношений.
4. Определение зависимых признаков.
Вычислительный эксперимент
Исходный код
Смотри также
Литература
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |