Наивный байесовский классификатор

Материал из MachineLearning.

Перейти к: навигация, поиск
Основная статья: байесовский

Наивный байесовский классификатор (naїve Bayes) — специальный частный случай байесовского классификатора, основанный на дополнительном предположении, что объекты описываются n независимыми признаками: x \equiv \bigl( \xi_1=f_1(x),\ldots, \xi_n=f_n(x) \bigr). В этом случае функции правдоподобия классов представимы в виде p_y(x) = p_{y1}(\xi_1) \cdot \ldots \cdot p_{yn}(\xi_n), где p_{yj}(\xi_j) — плотность распределения значений j-го признака для класса y.

Предположение о независимости существенно упрощает задачу, так как оценить n одномерных плотностей гораздо легче, чем одну n-мерную плотность. К сожалению, оно крайне редко выполняется на практике, отсюда и название метода.

Наивный байесовский классификатор может быть как параметрическим, так и непараметрическим, в зависимости от того, каким методом Восстановление распределения вероятностейвосстанавливаются одномерные плотности.

Основные преимущества наивного байесовского классификатора — простота реализации и низкие вычислительные затраты при обучении и классификации. В тех редких случаях, когда признаки действительно независимы (или почти независимы), наивный байесовский классификатор (почти) оптимален.

Основной его недостаток — относительно низкое качество классификации в большинстве реальных задач.

Чаще всего он используется либо как примитивный эталон для сравнения различных моделей алгоритмов, либо как элементарный строительный блок в алгоритмических композициях.

Литература

  1. Айвазян С. А., Бухштабер В. М., Енюков И. С., Мешалкин Л. Д. Прикладная статистика: классификация и снижение размерности. — М.: Финансы и статистика, 1989.
  2. Вапник В. Н., Червоненкис А. Я. Теория распознавания образов. — М.: Наука, 1974.
  3. Вапник В. Н. Восстановление зависимостей по эмпирическим данным. — М.: Наука, 1979.
  4. Дуда Р., Харт П. Распознавание образов и анализ сцен. — М.: Мир, 1976.
  5. Hastie T., Tibshirani R., Friedman J. The Elements of Statistical Learning. — Springer, 2001. ISBN 0-387-95284-5.

Ссылки

Личные инструменты