Выделение периодической компоненты временного ряда (пример)
Материал из MachineLearning.
Введение
Временной ряд - последовательно измеренные через некоторые (зачастую равные) промежутки времени данные. При прогнозировании некоторых временных рядов, например временных рядов продаж, потребления энергии или электрокардиограммы, мы сталкиваемся с тем, что данные ряды обладают периодической компонентой. Существует несколько методов выявления периода. В данной работе сравниваются алгоритмы автокорреляционной функции и метода наименьших квадратов.
Автокорреляционная функция исследует временной ряд на наличие периодической компоненты, сдвигая ряд на несколько временных отсчетов и сравнивая с самим собой.
Метод наименьших квадратов(МНК) оценивает параметры для тригонометрической аппроксимации данного ряда. Так как любая последовательность, обладающая периодичностью может быть разложена в ряд Фурье, необходимо принять коэффициенты перед синусами и косинусами за коэффициенты регрессии и оценить их величину. Если найденная корреляция (коэффициент при определенном синусе или косинусе) велика, то можно заключить, что существует строгая периодичность на соответствующей частоте в данных.
Далее будет рассмотрена работа алгоритмов на модельных данных, а также на реальном временном ряде электрокардиограммы. Будет исследована зависимость коэффициента корреляции от различных характеристик временного ряда, а также рассмотрена возможность применения метода наименьших квадратов для прогнозирования данных.