Математические методы прогнозирования (кафедра ВМиК МГУ)/Спецкурсы-спецсеминары
Материал из MachineLearning.
Содержание |
Расписание спецкурсов и спецсеминаров в осеннем семестре 2011/2012 уч.г.
Пара | Понедельник | Вторник | Среда | Четверг | Пятница |
---|---|---|---|---|---|
8:45 – 10:20 | |||||
10:30 – 12:05 | |||||
12:15 – 13:50 | |||||
14:35 – 16:10 | C/К ОСАМ, Ф.Ф. Дедус, ауд. 507 С/К ВЗМБ, С.А. Махортых, ауд. 507 | ||||
16:20 – 17:55 | C/К ОСАМ, Ф.Ф. Дедус, ауд. 507 С/К ВЗМБ, С.А. Махортых, ауд. 507 | С/К ИВКЛ, С.И. Гуров, ауд. 607 | С/К БММО, Д.П. Ветров, ауд. 510 C/C АДМП, А.И. Майсурадзе, ауд. 582 | ||
18:05 – 19:40 | С/К НМАДК, В.В. Рязанов, ауд. 510 | С/С БММО, Д.П. Ветров, ауд. 510 |
Спецкурсы
- Байесовские методы машинного обучения, Д.П. Ветров, Д.А. Кропотов, проходит по средам в ауд. 510, начало в 16-20.
- В спецкурсе рассматривается применение байесовских методов к нескольким классическим задачам машинного обучения, позволяющих, в частности, автоматически решать задачи выбора модели и получать решающие правила, обладающие желаемыми свойствами. Спецкурс поддерживается практическими заданиями.
- Исчисления высказываний классической логики, С.И. Гуров, проходит по вторникам в ауд. 607, начало в 16-20, первое занятие состоится 4 октября.
- В спецкурсе рассматриваются основные понятия пропозициональной логики. Даются методы характеризации формул алгебры логики, в частности, метод резолюций и метод семантических таблиц. Изучаются логические исчисления гильбертовского и генценовского типов и общие свойства формальных теорий. Рассматриваются свойства метатеории логических исчислений: корректность и непротиворечивость, семантическая полнота, полнота по Посту, разрешимость и независимость. Спецкурс поддерживается практическими занятиями.
- Основы обобщенного спектрально-аналитического метода и его приложения, Ф.Ф. Дедус, А.Н. Панкратов, Р.К. Тетуев, проходит один раз в две недели по понедельникам в ауд. 507, начало в 14-35.
- Обобщенный спектрально-аналитический метод (ОСАМ) является комбинированным численно-аналитическим методом, в котором сочетаются сильные стороны числовых расчетов и аналитических преобразований. Основными математическими объектами метода являются семейства аналитических ортогональных функций, зависящие от параметров и позволяющие проводить адаптивную аналитическую аппроксимацию произвольных функций. В курсе подробно изучаются системы классических ортогональных многочленов непрерывного аргумента (Чебышева, Лежандра, Якоби, Лагерра, Эрмита) и ортогональные многочлены дискретного аргумента (Чебышева, Хана, Майкснера, Кравчука и Шарлье).
- Вычислительные задачи математической биологии, С.А. Махортых, А.Н. Панкратов, проходит один раз в две недели по понедельникам в ауд. 507, начало в 14-35.
- В спецкурсе рассматриваются дополнительные вопросы обобщенного спектрально-аналитического метода (ОСАМ) и его приложения к задачам распознавания в биоинформатике, связанным с аналитическим описанием и анализом, как текстовых последовательностей, так и пространственных структур биологических макромолекул.
- Нестатистические методы анализа данных и классификации, В.В. Рязанов, проходит по вторникам в ауд. 510, начало в 18-00.
- В спецкурсе будут рассмотрены проблемы и методы кластерного анализа (подходы и алгоритмы кластеризации с известным и неизвестным числом кластеров, критерии кластеризации, вопросы устойчивости, построение оптимальных коллективных решений), новые подходы в регрессионном анализе, поиск зависимостей по прецедентам, практические применения в медицине, бизнесе и технике.
- Структурные методы анализа изображений и сигналов, Д.П. Ветров, Д.А. Кропотов, читается в весеннем семестре.
- В спецкурсе излагаются основы теории графических моделей и их применения для решения неклассических задач обучения и вывода при наличии структурной информации. Спецкурс опирается на применение байесовского аппарата теории вероятностей. В единых терминах излагается ряд методов анализа изображений и сигналов, а также общие подходы к построению эффективных приближенных методов байесовского вывода. Спецкурс поддерживается практическими заданиями.
- Теория надёжности обучения по прецедентам, К.В. Воронцов.
- Спецкурс знакомит студентов с современным состоянием теории вычислительного обучения, исследующей проблему качества восстановления зависимостей по эмпирическим данным. Подробно рассматривается комбинаторная теория, позволяющая получать точные оценки вероятности переобучения.
- Извлечение информации из изображений, И.Б. Гуревич.
- В спецкурсе представлены постановки и методы решения математических и вычислительных задач, возникающих в связи с анализом и оцениванием информации, представляемой в виде изображений.
- Логический анализ данных в распознавании, Е.В. Дюкова.
- Излагаются общие принципы конструирования логических процедур распознавания. Изучаются вопросы эффективного применения комбинаторно-логических методов для синтеза распознающих процедур. Рассматриваются подходы к оценке вычислительной сложности алгоритмов и качества решения прикладных задач.
- Метрические методы интеллектуального анализа данных, А.И. Майсурадзе.
- Рассматриваются методы и технологии, применяющиеся в интеллектуальном анализе данных (ИАД, data mining) и базирующиеся на понятиях сходства, близости, аналогии. Идея сходства свойственна человеческому мышлению, это породило целый комплекс подходов для всех фундаментальных задач ИАД, среди которых основное внимание в курсе уделено классификации, восстановлению регрессии, кластеризации, восстановлению пропущенных данных.
- Задачи распознавания в биоинформатике, К.В. Рудаков, И.Ю. Торшин.
- Данный курс рассчитан на будущих специалистов в области математики и информатики. На примере биоинформатики иллюстрируется, как математик мог бы вникать в специфику предметной области, чтобы суметь успешно приспособить известные ему методы для решения прикладных и исследовательских задач.
- Непрерывные морфологические модели и алгоритмы, Л.М. Местецкий.
- Рассматривается задача анализа формы плоских фигур и связанные с ней приложения в области распознавания изображений, компьютерной графики и геоинформатики. Исследуются вопросы аппроксимации бинарных растровых изображений многоугольными фигурами, представления фигур циркулярными графами, вычисления скелетов, сравнения и преобразования формы на основе циркулярных графов.
Спецсеминары
- Байесовские методы машинного обучения, н.с., к.ф.-м.н. Д.П.Ветров, проходит по средам в ауд. 510, начало в 18-10.
- Анализ данных в метрических пространствах, доц., к.ф.-м.н. А.И.Майсурадзе, проходит по средам в ауд. 582, начало в 16-20.
- Проблемы обобщающей способности алгоритмов классификации, регрессии и прогнозирования, доц., к.ф.-м.н. К.В.Воронцов.
- Анализ и оценивание информации представленной в виде изображений, доц., к.ф.-м.н. И.Б.Гуревич.
- Новые методы в распознавании образов и прогнозировании, доц., к.ф.-м.н. С.И.Гуров.
- Спектральные методы в задачах математической биологии, проф., д.т.н. Ф.Ф.Дедус.
- Логические модели распознавания, доц., д.ф.-м.н. Е.В.Дюкова.
- Алгебрологические методы в задачах классификации и прогнозирования, академик РАН, д.ф.-м.н., профессор Ю.И.Журавлёв.
- Комбинаторные основы теории информации, проф., д.ф.-м.н. В.К.Леонтьев.
- Вычислительные задачи математической биологии и биофизики, доц., к.ф.-м.н. С.А.Махортых, доц., к.ф.-м.н. А.Н.Панкратов.
- Дискретно-непрерывные преобразования изображений в задачах распознавания, проф., д.т.н. Л.М.Местецкий.
- Прикладные методы прогнозирования и анализа данных, доц., д.ф.-м.н. В.В.Рязанов.
- Проблемно-ориентированные схемы распознавания, чл.-корр. РАН, проф. Рудаков Константин Владимирович, доц., к.ф.-м.н. Ю.В.Чехович.
Ссылки
http://vmk.somee.com — страница со спецкурсами и спецсеминарами факультета ВМК.