Аппроксимация функции ошибки
Материал из MachineLearning.
|
В работе рассматривается метод аппроксимации функции ошибки функцией многомерного нормального распределения. Рассматриваются случаи матрицы ковариации общего вида, диагональной матрицы ковариации, а также диагональной матрицы ковариации с равными значениями дисперсии. Для нормировки получившихся функций распределения используется аппроксимация Лапласа.
Постановка задачи
Дана выборка , где
- вектора независимой переменной, а
- значения зависимой переменной.
Предполагается, что![]()
где- некоторая параметрическая функция,
- вектор ее параметров. Предполагается, что задано апостериорное распределение параметров модели
, которому соответствует функция ошибки
:
. Пусть
- наиболее вероятные параметры модели. Требуется найти аппроксимацию Лапласа для функции
в точке
. Заметим, что в данной работе в качестве функции ошибки берется сумма квадратов ошибок аппроксимации
.
Описание решения
- настолько подробно, что по математическому описанию можно было бы восстановить код
Вычислительный эксперимент
Цель вычислительного эксперимента - ...
- описание эксперимента
- иллюстрации с комментариями
y = 1; % There is no need to post all your code here. Only extracts and only if it is necessary.
Требования к оформлению графиков:
- шрифт должен быть больше,
- толщина линий равна двум,
- заголовки осей с большой буквы,
- заголовок графика отсутствует (чтобы не дублировать подпись в статье);
- рекомендуется сразу сохранять EPS и PNG (для TeX и для Wiki).
h = figure; hold('on'); plot(xi,y,'r-', 'Linewidth', 2); plot(xi,y,'b.', 'MarkerSize', 12); axis('tight'); xlabel('Time, $\xi$', 'FontSize', 24, 'FontName', 'Times', 'Interpreter','latex'); ylabel('Value, $y$', 'FontSize', 24, 'FontName', 'Times', 'Interpreter','latex'); set(gca, 'FontSize', 24, 'FontName', 'Times') saveas(h,'ModelOne.eps', 'psc2'); saveas(h,'ModelOne.png', 'png');
Исходный код и полный текст работы
Смотри также
Литература
![]() | Данная статья является непроверенным учебным заданием.
До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}. См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе. |