Обсуждение участника:Riabenko

Материал из MachineLearning.

Перейти к: навигация, поиск

Глоссарий статистических терминов ISI


М-оценки — широкий класс статистических оценок, доставляющих минимум суммы каких-либо функций от данных:

\hat{\theta}=\arg\min_{\displaystyle\theta}\left(\sum_{i=1}^N\rho(x_i, \theta)\right) \,\!

М-оценками являются, в частности, оценки наименьших квадратов, а также многие оценки максимального правдоподобия.

Функция \rho выбирается таким образом, чтобы обеспечить желаемые свойства оценки (несмещённость и эффективность) в условиях, когда данные взяты из известного распределения, и достаточную устойчивость к отклонениям от этого распределения.

M-оценки положения распределения

Для положения распределения М-оценки задаются следующим образом:

\hat{\theta}=\arg\min_{\displaystyle\theta}\left(\sum_{i=1}^N\rho(x_i - \theta)\right), \,\!

\rho(0)=0, \;\; \rho(x)\geq 0 \forall x, \;\; \rho(-x)=\rho(x), \;\; \rho(x_1)\geq\rho(x_2) при |x_1|>|x_2|.

Задача минимизации приводит к уравнению

\sum_{i=1}^N \psi(x_i-\theta)=0,

где \psi – производная \rho.


М-оценка \rho(x) \psi(x) w(x)
Huber \begin{cases}x^2/2, & |x|\leq k \\ k\left(|x|-k/2\right), & |x|>k \end{cases} \begin{cases}x, & |x|\leq k  \\ k\operatorname{sgn}(x), & |x|>k \end{cases} \begin{cases}1, & |x|\leq k  \\ \frac{k}{x}, & |x|>k\end{cases}
"fair" c^2\left(\frac{|x|}{c}-\log\left(1+\frac{|x|}{c}\right)\right) \frac{x}{1+\frac{|x|}{c}} \frac{1}{1+\frac{|x|}{c}}
Cauchy \frac{c}{2}\log\left(1+\left(x/c\right)^2\right) \frac{x}{1+\left(x/c\right)^2} \frac{1}{1+\left(x/c\right)^2}
Geman-McClure \frac{x^2/2}{1+x^2} \frac{x}{\left(1+x^2\right)^2} \frac{1}{\left(1+x^2\right)^2}
Welsch \frac{c^2}{2}\left(1-\exp\left(-\left(x/c\right)^2\right)\right) x\exp\left(-\left(x/c\right)^2\right) \exp\left(-\left(x/c\right)^2\right)
Tukey \begin{cases}\frac{c^2}{6}\left(1-\left(1-\left(x/c\right)^2\right)^3\right), & |x|\leq c \\ \frac{c^2}{6}, & |x|>c \end{cases} \begin{cases}x\left(1\left(x/c\right)^2\right)^2 , & |x|\leq c \\ 0 , & |x|>c \end{cases} \begin{cases}\left(1\left(x/c\right)^2\right)^2, & |x|\leq c  \\ 0, & |x|>c \end{cases}
Andrews \begin{cases}k^2\left(1-\cos\left(x/k\right)\right), & |x|\leq k\pi \\ 2k^2, & |x|>k\pi \end{cases} \begin{cases}k\sin\left(x/k\right), & |x|\leq k\pi \\ 0, & |x|>k\pi \end{cases} \begin{cases}\frac{\sin\left(x/k\right)}{x/k}, & |x|\leq k\pi \\ 0, & |x|>k\pi \end{cases}

Следующая таблица содержит значения параметров методов, подобранные таким образом, чтобы при применении к стандартному нормальному распределению методы имели 95% эффективность.

М-оценка Значение параметра
Huber 1.345
"fair" 1.3998
Cauchy 2.3849
Welsch 2.9846
Tukey 4.6851
Andrews 1.339


Ссылки

  • M-estimator - статья из английской Википедии


Категоризация статей

Женя, я вижу, ты активно работаешь над улучшением статей по статистике. Старайся уделять внимание категоризации статей, которые правишь. Необходимым является наличие хотя бы одной категории в статье, но их может быть и несколько. Подробнее о категоризации можно прочитать здесь: MachineLearning:Категоризация. И вообше, не стесняйся спрашивать, если нужна помощь или что-то не понятно. :) --Yury Chekhovich 22:17, 17 мая 2010 (MSD)

Хорошо, спасибо! --Riabenko 11:03, 25 мая 2010 (MSD)
Личные инструменты