Участник:Anton/Песочница

Материал из MachineLearning.

Перейти к: навигация, поиск
Задание находится в разработке.

Не приступайте к выполнению задания до его официальной выдачи.


Содержание

Начало выполнения задания: 9 апреля 2012

Срок сдачи: 18 апреля 2012, 18.00


Формулировка задания

Система соседства марковской сети.
Система соседства марковской сети.

Рассматривается марковская сеть из 6 переменных: x_0, x_1, x_2, x_3, x_4, x_5. Энергия системы задается следующим образом:

E(x_0, \dots, x_5) = \sum_{i = 0}^5 \varphi_i(x_i) + \sum_{(i, j) \in \mathcal{E}} \varphi_{ij}(x_i, x_j).

Множества значений переменных: x_0, x_1 \in \{0, 1 \}; \quad x_2, x_3, x_4, x_5 \in \{0, 1, 2 \}. Система соседства переменных задана на рисунке.

Унарные потенциалы: \varphi_0(x_0) = -5x_0, \quad i = 0; \quad \varphi_i(x_i) = 0, \quad i > 0.

Парные потенциалы:  \varphi_{ij}(x_i, x_j) = -|i-j|(x_i - x_j)^2, \quad (i,j) \in \mathcal{E}.

Совместное распределение переменных задается следующим образом:

p(x_0, \dots, x_5) = \frac{1}{Z(T)} \exp\left( -\frac{1}{T} E(x_0, \dots, x_5) \right),
где параметр T — температура системы.


Задание:

  1. При помощи алгоритма передачи сообщений вычислить мин-маргиналы и найти все конфигурации, обладающие минимальной энергией.
  2. При помощи алгоритма передачи сообщений вычислить нормировочную константу Z(T) и маргинальные распределения p(x_i) для всех i при температуре T = 1/ln(2).
  3. Как будут меняться маргинальные распределения при изменении температуры? Ответ обосновать.


Оформление задания

Выполненный вариант задания необходимо сдать лектору в бумажном виде или прислать на bayesml@gmail.com в электронном виде. Для решения задания можно использовать собственноручно написанные программные средства. Если таковые используются, то их тоже необходимо прислать.