Обсуждение участника:ADY
Материал из MachineLearning.
Содержание |
Вниманию участников
Появилась страница Вниманию участников предназначенная для общения участников по проекту. Предлагаю все идеи и проблемы вносить туда. --Yury Chekhovich 13:56, 29 февраля 2008 (MSK)
О правилах хорошего тона и некоторых отличиях машинного обучения от философии
Уважаемый участник! 1. На персональной странице неплохо бы первым делом представиться. Нам нечего скрывать друг от друга. 2. А вот за этими словами про машинное обучение стоит ли конкретное знание, опыт, десятки раздавленных граблей? Если это просто философствования, то я не рекомендовал бы это держать даже на личной страничке. Пока этот текст абсолютно непонятен. — К.В.Воронцов 13:45, 5 апреля 2008 (MSD)
Статья RapidMiner
Правильнее будет дать описание системы на русском языке и своими словами.
В качестве примера описания системы рекомендую использовать статью WEKA.
Andrew 15:35, 15 апреля 2008 (MSD)
Статья про RapidMiner уже приведена в божеский вид
Андрей, не зевай — я за тебя доделал RapidMiner! Но остальные три статьи за тобой! ;) Давай будем стараться не плодить столь неотёсанных заготовок. Признаться, я и сам грешен, но стараюсь хотя бы наметить структуру, поставить шаблончик {{stub}}) или {{UnderConstruction|Подпись=~~~~}}. Ещё рекомендую заглядывать в англоязычную Википедию и другие непредвзятые источники. На страницах производителей некоторые высказывания носят рекламный характер. Ещё, по RapidMiner-у проверь пож-ста факты: я не слишком глубоко в нём разбираюсь. Например, он все или только многие операторы WEKA поддерживает? — К.В.Воронцов 23:40, 15 апреля 2008 (MSD)
>он все или только многие операторы WEKA поддерживает
Я два года назад его изучал... Тогда в документации было написано, что по счастливому совпадению WEKA оказалась полностью совместима с YALE(RapidMiner) :). | ADY 23:55, 21 апреля 2008 (MSD)
Возник вот форумный вопрос...
Допустим требуется выбрать одну лучшую из двух дискретных функций распределения вероятностей и согласно функционалу качества: , где — истинные значения вероятностей.
Насколько я понимаю, если верно соотношение: (для всех i), при уровне справедливости , где — оценка вероятностей на конкретных данных (то есть, другими словами, есть доверительный интервал для оценок вероятностей), то: и , а значит: P1 лучше P2 в смысле функционала V на уровне справедливости , если . И, аналогично, P2 лучше P1 в смысле функционала V на уровне справедливости , если . Верно ли такое утверждение и как построить доверительные интервалы для вероятности для частотной оценки вероятностей? | ADY 14:45, 23 мая 2008 (MSD)
- Ответ
- Понять вопрос затруднительно: не ясно, что такое , , , , .
- Уровень значимости, а не справедливости.
- Почему именно такая функция качества, а не какая-либо стандартная: Колмогорова-Смирнова, Кульбака-Лейблера, хи-квадрат?
- Кажется, в формуле имелось в виду ?
- Этому вопросу здесь не место (см. шапку этой страницы). Лучше написать мне письмо — К.В.Воронцов 15:43, 25 мая 2008 (MSD).
- Ответ[2]
- - функция V, в которую входят значения с *; - множество допустимых значений вероятностей на уровне ; - максимальное допустимое отклонение от оценки вероятности на уровне ; , - максимальное допустимое отклонение функционалов на уровне .
- Всегда путаю, что обзывается этим уровнем - мощность критического множества или дополнительного к критическому - посему использовал "уровень справедливости" (мощность множества: множество = все_множество - критическое_множество).
- Такая функция напрямую следует из задачи.
- Да, там действительно была очепятка (должна быть такая же формула, что и для ).
- А где место?... :)
- Спасибо за комментарий. | ADY 13:41, 26 мая 2008 (MSD)