Методы оптимизации в машинном обучении (курс лекций)/2012/Задание 3

Материал из MachineLearning.

Версия от 13:47, 22 ноября 2012; Kropotov (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск
Текст задания находится в стадии формирования. Просьба не приступать к выполнению задания до тех пор, пока это предупреждение не будет удалено.



Начало выполнения задания: 24 ноября 2012

Срок сдачи: 7 декабря 2012 (пятница), 23:59

Среда реализации задания – MATLAB.

Формулировка задания

Для выполнения задания необходимо:

  • Реализовать алгоритмы одномерной минимизации функции без производной: метод золотого сечения, метод парабол и комбинированный метод Брента;
  • Протестировать реализованные алгоритмы на следующем наборе задач оптимизации:
    • f(x) = -5x^5+4x^4-12x^3+11x^2-2x+1 на интервале [-0.5, 0.5];
    • f(x) = \ln^2(x-2) + \ln^2(10-x) - x^{0.2} на интервале [6, 9.9];
    • f(x) = -3x\sin 0.75x + \exp(-2x) на интервале [0, 2\pi];
    • f(x) = \exp(3x) + 5\exp(-2x) на интервале [0, 1];
    • f(x) = 0.2x\ln x + (x-2.3)^2 на интервале [0.5, 2.5];
  • Протестировать реализованные алгоритмы для задач минимизации многомодальных функций, например, на различных полиномах;
  • Реализовать метод кубических аппроксимаций (по значениям функции и производной в двух точках) и комбинированный метод Брента c производной, сравнить их работу с методами оптимизации без производной;
  • Реализовать метод Флетчера для неточной одномерной оптимизации, протестировать метод для минимизации двухмерной функции f(x) = 0.7x_1^4-8x_1^2+6x_2^2+\cos(x_1x_2)-8x_1 из точки x_0 = [-\pi, \pi]^T вдоль направлений d = [1, -1.3]^T и d = [1, -1.1]^T, сравнить работу метода Флетчера с точными методами одномерной минимизации;
  • Написать отчет в формате PDF с описанием всех проведенных исследований. Данный отчет должен содержать, в частности, количество обращений к оракулу при всех запусках итерационных процессов оптимизации.

Спецификация реализуемых функций

Метод золотого сечения
[x_min, f_min, status] = min_golden(func, interval, param_name1, param_value1, ...)
ВХОД
func — указатель на оптимизируемую функцию;
interval — границы интервала оптимизации, вектор типа double длины 2;
(param_name, param_value) — необязательные параметры, следующие названия и значения возможны:
'eps' — точность оптимизации по аргументу, число, по умолчанию = 1e-5;
'max_iter' — максимальное число итераций, число, по умолчанию = 500;
'display' — режим отображения, true или false, если true, то отображаются номер итерации, текущее значение функции, аргумента, текущая точность и др. показатели, по умолчанию = false;
ВЫХОД
x_min — найденное значение минимума, число;
f_min — значение функции в точке минимума, число;
status — результаты оптимизации, структура со следующими полями:
'flag' — общий результат, число, равно 1, если достигнут оптимум с точностью eps, равно -1, если произошел выход по максимальному числу итераций;
'num_oracle' — количество обращений к оракулу;

Прототипы функций min_parabolic для метода парабол, min_qubic для кубических аппроксимаций и min_brent для метода Брента выглядят аналогично. В методе Брента добавляется параметр 'use_gradient' с возможными значениями true и false для учета случая оптимизации с производной и без. При отображении в методе Брента необходимо указывать способ выбора очередной точки на каждой итерации (golden/parabolic или bisection/parabolic).

Метод Флетчера
[alpha_min, f_min, status] = min_fletcher(func, x, d, param_name1, param_value1, ...)
ВХОД
func — указатель на оптимизируемую функцию;
x — текущая точка, вектор типа double;
d — направление минимизации, вектор типа double;
(param_name, param_value) — необязательные параметры, следующие названия и значения возможны:
'params' — параметры метода [rho sigma tau xi], по умолчанию = [0.1 0.7 0.1 9];
'max_iter' — максимальное число итераций, число, по умолчанию = 100;
'display' — режим отображения, true или false, по умолчанию = false;
ВЫХОД
alpha_min — найденное значение минимума для alpha, число;
f_min — значение функции в точке минимума, число;
status — результаты оптимизации, структура со следующими полями:
'flag' — общий результат, число, равно 1, если достигнут неточный оптимум, равно -1, если произошел выход по максимальному числу итераций;
'num_oracle' — количество обращений к оракулу;

Оформление задания

Выполненный вариант задания необходимо прислать письмом по адресу bayesml@gmail.com с темой «[МОМО12] Задание 1. ФИО». Убедительная просьба присылать выполненное задание только один раз с окончательным вариантом. Новые версии будут рассматриваться только в самом крайнем случае. Также убедительная просьба строго придерживаться заданной выше спецификации реализуемых функций. Очень трудно проверять большое количество заданий, если у каждого будет свой формат реализации.

Письмо должно содержать:

  • PDF-файл с описанием проведенных исследований;
  • Файлы min_golden.m, min_quadratic.m, min_cubic.m, min_brent.m, min_fletcher.m;
  • Набор вспомогательных файлов при необходимости.
Личные инструменты