Критерий омега-квадрат
Материал из MachineLearning.
Критерий омега-квадрат, также называемый критерием Смирнова-Крамера-фон Мизеса, используется для проверки гипотезы "случайная величина имеет распределение ".
Содержание |
Описание критерия
Пусть - элементы выборки, упорядоченные по возрастанию. Статистика критерия имеет вид
- ,
где - теоретическая функция распределения с известными параметрами. То есть, проверяется простая гипотеза.
При объёме выборки можно пользоваться квантилями распределения ,
приведенными в следующей таблице:
0,900 0,950 0,990 0,995 0,999 0,3473 0,4614 0,7435 0,8694 1,1679
При таблицей можно пользоваться с заменой на
Использование критерия для проверки нормальности
В данном случае критерий омега-квадрат (Крамера-Мизеса-Смирнова) используется для проверки сложной гипотезы о принадлежности случайной величины нормальному закону, параметры которого оцениваются по этой же выборке методом максимального правдоподобия (используются выборочные оценки среднего и дисперсии).
Надо отметить, что распределения статистики критерия различаются для случаев оценивания одного, другого или обоих параметров.
В случае использования выборочных оценок среднего и дисперсии можно воспользоваться критическими значениями, представленными в таблице (Мартынов Г.В.):
0,900 0,950 0,990 0,995 0,999 0,1035 0,1260 0,1788 0,2018 0,2559
Проверка сложных гипотез
При проверке сложных гипотез, когда по выборке оцениваются параметры закона, с которым проверяется согласие, непараметрические критерии согласия теряют свойство свободы от распределения (Kac, Kiefer, Wolfowitz). При проверке сложных гипотез условные распределения статистик непараметрических критериев согласия (и критерия Колмогорова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров.
Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни коем случае нельзя.
О применении критерия Колмогорова для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:
- Статистический анализ данных, моделирование и исследование вероятностных закономерностей. Компьютерный подход : монография. – Новосибирск : Изд-во НГТУ, 2011. – 888 с. (главы 3 и 4)
- Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.I // Измерительная техника. 2009. № 6. – С.3-11.
- Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.II // Измерительная техника. 2009. № 8. – С.17-26.
Литература
- Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
- Смирнов Н. В. О распределении -критерия Мизеса // Математический сб. 1937.2(44), №5. С. 973-993.
- Смирнов Н. В. О критерии Крамера—фон Мизеса // Успехи матем. наук (новая серия). 1949. Т. 4, №4C2). С. 196-197.
- Мартынов Г. В. Критерии омега-квадрат. — М.: Наука, 1978.
- Kac M., Kiefer J., Wolfowitz J. On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods // Ann. Math. Stat., 1955. V.26. – P.189-211.
- [Р 50.1.037–2002. Рекомендации по стандартизации. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть II. Непараметрические критерии. – М.: Изд-во стандартов. 2002. – 64 с.[1]]
Ссылки
- Cramér-von-Mises criterion(Wikipedia)