Критерии нормальности

Материал из MachineLearning.

Версия от 01:14, 20 октября 2013; Headrd (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Критерии нормальности - это группа статистических критериев, предназначенных для проверки нормальности распределения. Критерии нормальности являются частным случаем критериев согласия.

Тестирование данных на нормальность часто является первым этапом их анализа, так как большое количество статистических методов исходит из предположения нормальности распределения изучаемых данных.

Содержание

Примеры использования

Пример 1. Пусть необходимо проверить гипотезу о равенстве средних значений в двух независимых выборках. Для этой цели подходит критерий Стьюдента. Но применение критерия Стью дента обосновано, только если данные подчиняются нормальному распределению. Поэтому перед применением критерия необходимо проверить гипотезу о нормальности исходных данных.

Пример 2. Проверка остатков линейной регрессии на нормальность - позволяет проверить, соответствует ли применяемая модель регрессии исходным данным.

Список критериев нормальности

О применении "специальных" критериев нормальности

Сравнение критериев нормальности

В следующей таблице представлены результаты исследования сравнительной мощно- мощности критериев нормальности распределения вероятностей случайных величин для различных альтернативных распределений. Критерии по каждой альтернативе представлены в порядке предпочтения — от наибольшего 1 до наименьшего 21. В последней графе приведено общее ранжирование, соответствующее набранной сумме рангов. Через \gamma_2 в таблице обозначен коэффициент эксцесса.

[1]
Название критерия Характеристика альтернативного распределения Ранг
асимметричное симметричное близкое к нормальному
\gamma_2 < 0 \gamma_2 > 0 \gamma_2 < 0 \gamma_2 > 0 \gamma_2 = 0
Критерий Шапиро-Уилка 1 1 3 2 2 1
Критерий асимметрии и эксцесса 7 8 10 6 4 2
Критерий Дарбина 11 7 7 15 1 3
Критерий Д'Агостино 12 9 4 5 12 4
Критерий эксцесса 14 5 2 4 18 5
Критерий Васичека 2 14 8 10 10 6
Критерий Дэвида-Хартли-Пирсона 21 2 1 9 1 7
Критерий хи-квадрат 9 20 9 8 3 8
Критерий Андерсона-Дарлинга 18 3 5 18 7 9
Критерий Филлибена 3 12 18 1 9 10
Критерий Колмогорова-Смирнова 16 10 6 16 5 11
Критерий Мартинса-Иглевича 10 16 13 3 15 12
Критерий Лина-Мудхолкара 4 15 12 12 16 13
Критерий асимметрии 8 6 21 7 19 14
Критерий Шпигельхальтера 19 13 11 11 8 15
Критерий Саркади 5 18 15 14 13 16
Критерий Смирнова-Крамера-фон Мизеса 17 11 20 17 6 17
Критерий Локка-Спурье 13 4 19 21 17 18
Критерий Оя 20 17 14 13 14 19
Критерий Хегази-Грина 6 19 16 19 21 20
Критерий Муроты-Такеучи 15 21 17 20 20 21

Примечания

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.

См. также

Ссылки

  • Normality tests - список статей о критериях проверки нормальности в англоязыяной Википедии.
  • Comparison of tests for univariate normality - статья, посвящённая сравнению мощности различных критериев нормальности против разных типов альтернатив .


Данная статья является непроверенным учебным заданием.
Студент: Участник:Slimper
Преподаватель: Участник:Vokov
Срок: 08 января 2010

До указанного срока статья не должна редактироваться другими участниками проекта MachineLearning.ru. По его окончании любой участник вправе исправить данную статью по своему усмотрению и удалить данное предупреждение, выводимое с помощью шаблона {{Задание}}.

См. также методические указания по использованию Ресурса MachineLearning.ru в учебном процессе.


Личные инструменты