Критерий омега-квадрат
Материал из MachineLearning.
Критерий омега-квадрат, также называемый критерием Смирнова-Крамера-фон Мизеса, используется для проверки гипотезы "случайная величина имеет распределение ".
Содержание |
Описание критерия
Пусть - элементы выборки, упорядоченные по возрастанию. Статистика критерия имеет вид
- ,
где - теоретическая функция распределения с известными параметрами. То есть, проверяется простая гипотеза.
При объёме выборки можно пользоваться квантилями распределения ,
приведенными в следующей таблице:
0,900 0,950 0,990 0,995 0,999 0,3473 0,4614 0,7435 0,8694 1,1679
При таблицей можно пользоваться с заменой на
Использование критерия для проверки нормальности
В данном случае критерий омега-квадрат (Крамера-Мизеса-Смирнова) используется для проверки сложной гипотезы о принадлежности случайной величины нормальному закону, параметры которого оцениваются по этой же выборке методом максимального правдоподобия (используются выборочные оценки среднего и дисперсии).
Надо отметить, что распределения статистики критерия различаются для случаев оценивания одного, другого или обоих параметров.
В случае использования выборочных оценок среднего и дисперсии можно воспользоваться критическими значениями, представленными в таблице (Мартынов Г.В.):
0,900 0,950 0,990 0,995 0,999 0,1035 0,1260 0,1788 0,2018 0,2559
Проверка сложных гипотез
При проверке сложных гипотез, когда по выборке оцениваются параметры закона, с которым проверяется согласие, непараметрические критерии согласия теряют свойство свободы от распределения (Kac, Kiefer, Wolfowitz). При проверке сложных гипотез условные распределения статистик непараметрических критериев согласия (и критерия Крамера-Мизеса-Смирнова) зависят от ряда факторов: от вида наблюдаемого закона, соответствующего справедливой проверяемой гипотезе; от типа оцениваемого параметра и числа оцениваемых параметров; в некоторых случаях от конкретного значения параметра (например, в случае семейств гамма- и бета-распределений); от метода оценивания параметров.
Различия в предельных распределениях той же самой статистики при проверке простых и сложных гипотез настолько существенны, что пренебрегать этим ни коем случае нельзя.
О применении критерия Колмогорова для проверки различных сложных гипотез см. на сайте Новосибирского государственного технического университета:
- Статистический анализ данных, моделирование и исследование вероятностных закономерностей. Компьютерный подход : монография. – Новосибирск : Изд-во НГТУ, 2011. – 888 с. (главы 3 и 4)
- Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.I // Измерительная техника. 2009. № 6. – С.3-11.
- Модели распределений статистик непараметрических критериев согласия при проверке сложных гипотез с использованием оценок максимального правдоподобия. Ч.II // Измерительная техника. 2009. № 8. – С.17-26.
Литература
- Большев Л.Н., Смирнов Н.В. Таблицы математической статистики. М.: Наука, 1983.
- Смирнов Н. В. О распределении -критерия Мизеса // Математический сб. 1937.2(44), №5. С. 973-993.
- Смирнов Н. В. О критерии Крамера—фон Мизеса // Успехи матем. наук (новая серия). 1949. Т. 4, №4C2). С. 196-197.
- Мартынов Г. В. Критерии омега-квадрат. — М.: Наука, 1978.
- Kac M., Kiefer J., Wolfowitz J. On Tests of Normality and Other Tests of Goodness of Fit Based on Distance Methods // Ann. Math. Stat., 1955. V.26. – P.189-211.
- [Р 50.1.037–2002. Рекомендации по стандартизации. Прикладная статистика. Правила проверки согласия опытного распределения с теоретическим. Часть II. Непараметрические критерии. – М.: Изд-во стандартов. 2002. – 64 с.[1]]