Метод Бокса-Кокса
Материал из MachineLearning.
В реальности часто приходится иметь дело со статистическими данными, которые по тем или иным причинам не проходят тест на нормальность. В этой ситуации есть два выхода: либо обратиться к непараметрическим методам, либо воспользоваться специальными методами, позволяющими преобразовать исходную «ненормальную статистику» в «нормальную». Среди множества таких методов преобразований одним из лучших (при неизвестном типе распределения) считается преобразование Бокса-Кокса.
Содержание |
Вид преобразования
Для исходной последовательности однопараметрическое преобразование Бокса-Кокса с параметром определяется следующим образом:
Параметр можно выбирать , максимизируя логарифм правдоподобия. Еще один способ поиска оптимального значения параметра основан на поиске максимальной величины коэффициента корреляции между квантилями функции нормального распределения и отсортированной преобразованной последовательностью.
Модификации
Так как исходный метод предполагает работу только с положительными величинами, было предложено несколько модификаций, учитывающих нулевые и отрицательные значения.
Самый очевидный вариант - сдвиг всех значений на константу так, чтобы выполнялось условие . После этого преобразование выглядит так:
Еще более общая форма:
где .
Реализации
- MATLAB: функция
boxcox
изFinancial toolbox
. - R: функция
boxcox
для линейных моделей в пакетеMASS
,boxcoxnc
в пакетеAID
,box.cox
в пакетеcar
.
Ссылки
- Box, Cox (1964) "An Analysis of Transformations"
- Статьи по автоматическому трейдингу и оптимизации стратегий: "Преобразование Бокса-Кокса".
- А.Н. Порунов (2010). "Бокс-Кокс преобразование и иллюзия "нормальности" макроэкономического ряда".
- "Преобразование Бокса-Кокса"