Сингулярное разложение

Материал из MachineLearning.

Перейти к: навигация, поиск

Сингулярное разложение (Singular Value Decomposition, SVD) — декомпозиция вещественной матрицы с целью ее приведения к каноническому виду. SVD является удобным методом при работе с матрицами. Оно показывает геометрическую структуру матрицы и позволяет наглядно представить имеющиеся данные. SVD используется при решении самых разных задач — от приближения методом наименьших квадратов и решения систем уравнений до сжатия и распознавания изображений. При этом используются разные свойства сингулярного разложения, например, способность показывать ранг матрицы, приближать матрицы данного ранга. SVD позволяет вычислять обратные и псевдообратные матрицы большого размера, что делает его полезным инструментом при решении задач регрессионного анализа.

Для любой вещественной (n\times n)-матрицы A существуют две вещественные ортогональные (n\times n)-матрицы U и V такие, что U^T A V — диагональная матрица \Lambda,

U^TAV=\Lambda.

Матрицы U и V выбираются так, чтобы диагональные элементы матрицы \Lambda имели вид

\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_r > \lambda_{r+1}=...=\lambda_n=0,

где r — ранг матрицы A. В частности, если A невырождена, то

\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n > 0.

Индекс r элемента \lambda_r есть фактическая размерность собственного пространства матрицы A.

Столбцы матриц U и V называются соответственно левыми и правыми сингулярными векторами, а значения диагонали матрицы \Lambda называются сингулярными числами.

Эквивалентная запись сингулярного разложения — A=U\Lambda V^T.

Например, матрица

A = \left(\begin{matrix}0.96 & 1.72\\2.28 & 0.96\\ \end{matrix}\right)

имеет сингулярное разложение

A = U\Lambda V^T=\left(\begin{matrix}0.6 & 0.8\\0.8 & -0.6\\\end{matrix}\right)\left(\begin{matrix}3 & 0\\0 & 1\\\end{matrix}\right)\left(\begin{matrix}0.8 & -0.6\\0.6 & 0.8\\\end{matrix}\right)^T

Легко увидеть, что матрицы U и V ортогональны,

U^TU=UU^T=I, также V^TV=VV^T = I,

и сумма квадратов значений их столбцов равна единице.

Личные инструменты