Критерий Диболда-Мариано

Материал из MachineLearning.

Версия от 11:14, 24 января 2014; Riabenko (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Содержание

Критерий Диболда-Мариано (Diebold-Mariano test) — статистический тест, позволяющий сравнивать качество прогнозов временного ряда двух предсказательных моделей. Впервые был представлен в работе Диболда и Мариано в 1995 году, где был приведен небольшой обзор тестов такого рода.

Обозначения

\{y_t\}_{t=1}^T — значения временного ряда,

\{y_{At}\}_{t=1}^T — прогнозные значения модели A,

\{y_{Bt}\}_{t=1}^T — прогнозные значения модели B,

\{e_{At}\}_{t=1}^T и \{e_{Bt}\}_{t=1}^T — остатки прогнозов обеих моделей,

g(e) — функция потерь,

d_{t} = g(e_{At}) - g(e_{Bt}), t=1...T,

гипотеза H_0: \mathbf{E}d=0, т.е. качество прогнозов одидинаково,

альтернатива (двусторонняя): \mathbf{E}d\neq0, т.е. качество прогнозов отличается.

Описание

Если \{d_{t}\}_{t=1}^T является слабостационарным временным рядом, то можно показать, что \sqrt T(\bar d - \mu) \stackrel{d}{\longrightarrow} N(0, f), где \bar d =\frac1T \sum_1^{T} d_t, \mu — неизвестное матожидание процесса, f — его дисперсия. Вычисляемая статистика: S=\frac{\bar d}{\sqrt{(\bar f / T)}}, где \bar f = \sum_{t=-\infty}^{t=\infty}\gamma_d(\tau), где \gamma_d(\tau) — автоковариация d порядка \tau. Гипотезе H_0 соответствует S \sim N(0, 1).

Широта применения

Этот тест является устойчивым к различным отклонениям от стандартных предположенный о свойствах ошибок прогнозирования. А именно предполагается, что ошибки прогнозирования могут не удовлетворять классическим критериям, т.е. могут не быть нормальными, иметь ненулевой средний уровень, а также быть серийно и одновременно коррелированными.

Также описанный критерий является надежным для широкого класса функций потерь. В частности, функции потерь не обязаны быть квадратическими или симметричными и непрерывными. Помимо этого, ошибки прогнозирования могут не быть гауссовскими, а также могут иметь ненулевой средний уровень и быть коррелированными (как серийно, так и одновременно). Последнее допущение особенно важно, поскольку сравниваемые прогнозы являются прогнозами одного и того же временного ряда и основаны на довольно сильно совпадающих информационных множествах, вследствие чего ошибки прогнозирования могут быть сильно одновременно коррелированными. Однако ошибки прогнозирования в общем случае являются серийно коррелированными, и предложенный тест позволяет учитывать и эту особенность.

Также возможны модификации критерия для односторонних альтернатив и для коротких временных рядов.

Пример

Ниже приведен пример использования критерия на языке R. Критерий запускается два раза: в первый раз он отвергает гипотезу об совпадении качества прогнозов, а во второй раз не отвергает.

> library(forecast)
> # Test on in-sample one-step forecasts
> f1 <- ets(WWWusage)
> f2 <- auto.arima(WWWusage)
> accuracy(f1)
                    ME     RMSE      MAE       MPE    MAPE      MASE      ACF1
Training set 0.2528217 3.473243 2.812361 0.2803163 2.22432 0.6214815 0.1923543
> accuracy(f2)
                     ME    RMSE      MAE      MPE     MAPE      MASE
Training set 0.04803303 3.10304 2.395923 0.073378 1.914083 0.5294563
                     ACF1
Training set -0.007904884
> dm.test(residuals(f1),residuals(f2),h=1)

	Diebold-Mariano Test

data:  residuals(f1)residuals(f2)
DM = 2.2181, Forecast horizon = 1, Loss function power = 2, p-value =
0.02883
alternative hypothesis: two.sided

> # Test on out-of-sample one-step forecasts
> f1 <- ets(WWWusage[1:80])
> f2 <- auto.arima(WWWusage[1:80])
> f1.out <- ets(WWWusage[81:100],model=f1)
> f2.out <- Arima(WWWusage[81:100],model=f2)
> accuracy(f1.out)
                    ME    RMSE      MAE        MPE    MAPE      MASE      ACF1
Training set 0.1202345 3.31996 2.657234 0.06949685 1.39911 0.4390213 0.2341423
> accuracy(f2.out)
                    ME     RMSE      MAE       MPE     MAPE      MASE
Training set 0.9983241 3.290295 2.401282 0.6350809 1.356964 0.3967336
                    ACF1
Training set 0.000574029
> dm.test(residuals(f1.out),residuals(f2.out),h=1)

	Diebold-Mariano Test

data:  residuals(f1.out)residuals(f2.out)
DM = 0.054, Forecast horizon = 1, Loss function power = 2, p-value =
0.9575
alternative hypothesis: two.sided

Программные реализации

  • Для Matlab.
  • Для R есть функция dm.test из пакета forecast.

Ссылки

  • Francis X. Diebold & Robert S. Mariano, 1994. "Comparing Predictive Accuracy", NBER Technical Working Papers 0169, National Bureau of Economic Research, Inc.
  • K. Bouman. Quantitative methods in international finance and macroeconomics. Econometric Institute, 2011. Lecture FEM21004-11