Спецкурс «Прикладные задачи анализа данных»
Материал из MachineLearning.
Содержание |
Объявление
В сентябре 2014 года будет объявлен новый набор слушателей спецкурса.
Поскольку обычно желающих очень много, а работа на спецкурсе подразумевает сильную вовлечённость студентов и небольшое число слушателей, то будет произведён отбор.
Для участия в отборе необходимо:
- освоить (если его не было в учебной программе) курс Машинное обучение,
- выступить хотя бы в одном соревновании по анализу данных (см. ниже),
- Пройти анкетирование (или собеседование в сентябре).
Список допустимых соревнований:
- Higgs Boson Machine Learning Challenge
- ecMeg2014 - Decoding the Human Brain
- Detect seizures in intracranial EEG recordings
- KDD Cup 2014 - Predicting Excitement at DonorsChoose.org
- Acquire Valued Shoppers Challenge
Результат будет учитываться при отборе.
Аннотация
Данный курс стал победителем конкурса инновационных учебных технологий. |
Основная цель: практика решения современных задач классификации, прогнозирования, регрессии, рекомендации и т.п., подготовка участников к соревнованиям на платформах Kaggle и Algomost.
Мероприятие проходит в двух режимах:
- спецкурса – лекции о решении прикладных задач, обучение некоторым системам анализа данных (например R) и т.п.
- спецсеминара – обсуждение решаемых задач, выработка общих стратегий, разделение работы в рамках участия в соревновании одной командой, мозговой штурм и т.п.
Важно: от участников потребуется выполнение нетривиальных практических заданий!
Лектор: Дьяконов Александр
Страницы курсов прошлых лет
Спецкурс «Прикладные задачи анализа данных» (2013 год)
Правила
- Рассылки материалов делаются только зарегистрированным слушателям курса (перечислены в таблице слушателей).
- Слушатели, которые перестают делать домашние задания, удаляются из таблицы.
Лекции
Здесь будет выложена программа нового (2014 года) - по мере чтения курса.
Старую программу см. на странице Спецкурс «Прикладные задачи анализа данных» (2013 год).
Отчётность
- отчёты по решению конкурсных задач (доклады с презентацией + исходники)
- зачёт с оценкой в конце семестра
Ссылки
Вводная лекция, которая написана для просеминара.
Глава 12 «Шаманство в анализе данных».
Переработка предыдущего источника в научно-популярную лекцию.
Рассказываются тонкости решения задач, которые умалчиваются в основных курсах.
Подробное описание некоторых простых алгоритмов для прогнозирования туристических временных рядов.
- Страница спецсеминара «Алгебра над алгоритмами и эвристический поиск закономерностей»
Приведены ссылки на сайты с данными реальных задач анализа данных.
Ещё ссылки
Неплохая короткая демка про соревнования в анализе данных, платформы для соревнований и возможности системы R.