Профиль компактности
Материал из MachineLearning.
|
Профиль компактности выборки в метрических алгоритмах классификации — функция , выражающая долю объектов выборки, для которых правильный ответ не совпадает с правильным ответом на -м соседе.
Определения
Рассматривается задача классификации. Имеется множество объектов и множество имён классов . Задана обучающая выборка пар «объект—ответ» .
Пусть на множестве объектов задана функция расстояния . Эта функция должна быть достаточно адекватной моделью сходства объектов. Чем больше значение этой функции, тем менее схожими являются два объекта .
Для произвольного объекта расположим объекты обучающей выборки в порядке возрастания расстояний до :
где через обозначается -й сосед объекта . Аналогичное обозначение введём и для ответа на -м соседе: . Каждый объект порождает свою перенумерацию выборки.
Рассматривается метод ближайшего соседа, который относит классифицируемый объект к тому классу , которому принадлежит ближайший объект обучающей выборки :
Определение. Профиль компактности выборки есть функция
Профиль компактности является формальным выражением гипотезы компактности — предположения о том, что схожие объекты гораздо чаще лежат в одном классе, чем в разных. Чем проще задача, то есть чем чаще близкие объекты оказываются в одном классе, тем сильнее «прижимается к нулю» начальный участок профиля. В сложных задачах или при неудачном выборе функции расстояния ближайшие объекты практически не несут информации о классах, и профиль вырождается в константу, близкую к $0{.}5$, см. Рис.
Связь с полным скользящем контролем
Теорема.
См. также
Литература
- Воронцов К. В. [www.ccas.ru/frc/papers/voron04mpc.pdf Комбинаторный подход к оценке качества обучаемых алгоритмов] // Математические вопросы кибернетики / Под ред. О. Б. Лупанов. — М.: Физматлит, 2004. — Т. 13. — С. 5–36.
- Воронцов К. В., Колосков А. О. [www.ccas.ru/frc/papers/students/VoronKoloskov05mmro.pdf Профили компактности и выделение опорных объектов в метрических алгоритмах классификации] // Искусственный Интеллект. — 2006. — С. 30–33.