Международный стандарт представления чисел с плавающей точкой в ЭВМ
Материал из MachineLearning.
Содержание[убрать] |
Введение
Практически любой язык программирования даёт возможность использовать в вычислениях дробные числа. Когда дело касается программной реализации численных методов или любых других вычислений на ЭВМ, важным вопросом является внутреннее представление чисел, с которым приходится работать программисту. От этого главным образом зависит точность вычислений,а также их скорость.
В этом отчёте будут рассматриваться те аспекты представления чисел в ЭВМ, которые важны пользователям, желающим активно работать с дробными величинами. Будет достаточно подробно рассмотрен наиболее часто используемый стандарт IEEE 754. В заключение будут приведены способы доступа к основным параметрам представления дробных чисел в ряде языков программирования (C,C++,Fortran,Pascal).
Числа с плавающей точкой
Числа с плавающей точкой - общепринятая форма представления дробных чисел в ЭВМ.
Параметрами такой формы представления является основание степени (base) и точность
(precision).
При этом всегда требуется, чтобы основание степени было целым чётным числом.
Если
и
, то число 0.1 представляется в виде
.
Однако, очевидно, что при определённых параметрах некоторые числа не удастся представить точно. Например, при
и
то же самое число 0.1 представляется приблизительно в виде
(поскольку в бинарном представлении число 0.1 имеет бесконечный вид).
В общем случае при заданных параметрах запись вида
представляет число
При этом называется мантиссой числа и состоит из
позиций.
В дальнейшем под числом с плавающей точкой мы будем понимать дробные числа точно представимые в смысле данной формы.
Существуют ещё два важных параметра — максимальный и минимальный показатели степени и
.
Таким образом, при фиксированных параметрах мы можем представить
разных чисел с учётом знака.
Здесь возникает проблема - что делать с числами, не представимыми точно.
Чаще всего такая ситуация возникает при попытке представить числа, имеющие слишком длинное или вообще бесконечное представление (пример с 0.1).
В этом случае нужное нам число лежит где-то между двумя числами с плавающей точкой и будет представляться одним из них.
Реже встречается попытка использовать числа, меньшие, чем , или большие, чем
.
Подробнее об этом речь пойдёт в пункте
Числовой пример
Рекомендации программисту
Заключение
Список литературы
- David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computing Surveys, Vol. 23, No. 1 (March 1991), pages 5--48.