Международный стандарт представления чисел с плавающей точкой в ЭВМ
Материал из MachineLearning.
Содержание |
Введение
Практически любой язык программирования даёт возможность использовать в вычислениях дробные числа. Когда дело касается программной реализации численных методов или любых других вычислений на ЭВМ, важным вопросом является внутреннее представление чисел, с которым приходится работать программисту. От этого главным образом зависит точность вычислений,а также их скорость.
В этом отчёте будут рассматриваться те аспекты представления чисел в ЭВМ, которые важны пользователям, желающим активно работать с дробными величинами. Вначале будут введены общепринятые понятия для дальнейшего изложения материала. Будет достаточно подробно рассмотрен наиболее часто используемый стандарт IEEE 754. В заключение будут приведены способы доступа к основным параметрам представления дробных чисел в ряде языков программирования (C,C++,Fortran,Pascal).
Числа с плавающей точкой
Числа с плавающей точкой - общепринятая форма представления дробных чисел в ЭВМ. Основными параметрами такой формы представления является основание степени (base) и точность (precision). При этом всегда требуется, чтобы основание степени было целым чётным числом. Если и , то число 0.1 представляется в виде . Однако, очевидно, что при определённых параметрах некоторые числа не удастся представить точно. Например, при и то же самое число 0.1 представляется приблизительно в виде (поскольку в бинарном представлении число 0.1 имеет бесконечный вид).
В общем случае при заданных параметрах запись вида представляет число
При этом называется мантиссой числа и состоит из позиций. В дальнейшем под числом с плавающей точкой мы будем понимать дробные числа точно представимые в смысле данной формы.
Существуют ещё два важных параметра — максимальный и минимальный показатели степени и . Таким образом, при фиксированных параметрах мы можем представить разных чисел с учётом знака.
Здесь возникает проблема - что делать с числами, не представимыми точно. Чаще всего такая ситуация возникает при попытке представить числа, имеющие слишком длинное или вообще бесконечное представление (пример с 0.1). В этом случае нужное нам число лежит где-то между двумя числами с плавающей точкой и будет представляться одним из них. Реже встречается попытка использовать числа, меньшие чем , или большие чем . Подробнее об этих случаях речь пойдёт в разделе "Стандарт IEEE".
Введём ещё одну договорённость. Пока что представление чисел с плавающей точкой неуникально. Например, при и число 0.1 можно представить как и как . Представление числа, в старшей позиции которого стоит цифра, отличная от нуля , мы будем называть нормализованным. Использование нормализованных форм решает проблему неединственности представления чисел с плавающей точкой. (Однако, при такой договорённости возникает интересный вопрос — как представлять 0?)
Машинный эпсилон
Как известно, существует 2 вида погрешностей вычисления — абсолютная и относительная (Ошибки вычислений). Под относительной погреностью понимается отношение
где – значение, полученное при округлении, а - точное значение вычислений.
Представим, что результатом округления действительного числа стало число . Худшему случаю округления соответствует абсолютная погрещность, равная , где . В мантиссе результата округления позиций , в мантиссе абсолютной погрешности позиция.
При попытке написать неравенство для относительной погрешности, соответствующей упомянутой выше абсолютной погрешности, несложно получить, что
- .
Величину принято называть машинным эпсилоном (machine epsilon). Таким образом можно утверждать, что при округлении дробного числа ближайшим к нему числом с плавающей точкой относительная погрешность округления не превосходит машинного эпсилона.
Существует и другое определение. Машинный эпсилон можно определить как минимальное положительное число, которое будучи прибавлено к единице даёт результат отличный от единицы. Читателю предлагается проверить эквивалентность этих определений самостоятельно.
Стандарт IEEE
Рекомендации программисту
Заключение
Список литературы
- David Goldberg. What Every Computer Scientist Should Know About Floating-Point Arithmetic. ACM Computing Surveys, Vol. 23, No. 1 (March 1991), pages 5--48.