Участник:Neychev

Материал из MachineLearning.

Версия от 16:41, 24 августа 2015; Neychev (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

МФТИ, ФУПМ

Кафедра "Интеллектуальные системы"

Направление "Интеллектуальный анализ данных"

neychev@phystech.edu

Отчет о научно-исследовательской работе

Весна 2015, 6-й семестр

Выбор оптимального набора признаков из мультикоррелирующего множества в задаче прогнозирования

В данной статье рассматривается проблема прогнозирования временных рядов. Для получения устойчивого прогноза предлагается рассматривать входные временные ряды как матрицу объект-признак и использовать отбор признаков. В условиях мультиколлинеарности признаков необходим критерий для ее обнаружения. Для этого предлагается применить подход, основанный на методе Белсли. Исключение коррелирующих признаков при отборе позволяет сократить размерность задачи и получить устойчивые оценки параметров модели. Для отбора в работе предлагается метод добавления и удаления признаков. В качестве практической проверки данного метода в ходе вычислительного эксперимента решается задача прогнозирования почасовых значений цен на электроэнергию. Эксперименты были проведены на реальных данных о ценах на электроэнергию в Германии.

Публикация

Нейчев Р.Г., Катруца А.М., Стрижов В.В. Выбор оптимального набора признаков из мультикоррелирующего множества в задаче прогнозирования // Заводская лаборатория. — 2015. — ISSN 1028-6861(подана в журнал).

Личные инструменты