Барицентры и их приложения (регулярный семинар)

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Описание семинара:

Многие возникающие на практике многомерные ряды данных можно представить как меры на некотором метрическом пространстве (распределение интенсивности по полю изображения или по объему томограммы, пикселов - в цветовом пространстве и т.п.). Задачи анализа таких данных требуют подходящей операции усреднения, но множество мер на метрическом пространстве само допускает лишь метрическую структуру ("метрика Вассерштейна"): естественных векторных операций, необходимых для усреднения, на нем нет. Однако усреднение можно определить в чисто метрических терминах, как среднее по Фреше (элемент пространства мер, минимизирующий сумму квадратов расстояний до элементов выборки) - эта конструкция была предложена в 2011 году G. Carlier и M. Agueh под названием "барицентра Вассерштейна". В нашей группе мы изучаем геометрию пространства мер, планируем получить предельные теоремы для случайных мер (варианты закона больших чисел, центральной предельной теоремы, принципов больших уклонений - все с использованием барицентров Вассерштейна как средних), а также рассмотрим аналогичные конструкции для параметрических моделей (трактуемых как конечномерные подмногообразия в пространстве мер). Будут также рассматриваться вопросы эффективного численного вычисления барицентров.

Время заседаний:

Научные руководители семинара

А.Н. Соболевский, В. Г. Спокойный, Е. О. Черноусова

Организатор семинара

Совместный учебно-научный семинар магистерской программы Математические методы оптимизации и стохастики Факультета Компьютерных наук НИУ ВШЭ, Института проблем передачи информации РАН и Лаборатории ПреМоЛаб МФТИ. Куратор семинара Андрей Соболевский (профили в НИУ ВШЭ и на MathNet.ru)

Прошедшие заседания

Личные инструменты