Машинное обучение (РЭУ)

Материал из MachineLearning.

Перейти к: навигация, поиск


Содержание

Краткое описание

Курс ведется для магистров РЭУ им.Г.В.Плеханова. В курсе рассматриваются основные задачи анализа данных и обучения по прецедентам: классификация, кластеризация, регрессия, понижение размерности, ранжирование, коллаборативная фильрация. По изложению для каждой рассматриваемой задачи изучаются математические основы методов, лежащие в их основе предположения о данных, взаимосвязи методов между собой и особенности их практического применения. Большое внимание уделено освоению практических навыков анализа данных, отрабатываемых на семинарах, которое будет вестись с использованием языка python и соответствующих библиотек для научных вычислений. От студентов требуются знания линейной алгебры, математического анализа и теории вероятностей.

Задания

Проверка работы метода K-NN - до 31.01.16

Применение метода K-NN для распознавания цифр - до 14.01.16

Лекции

Введение

Метод ближайших соседей

Туториалы

Полезные ссылки

Машинное обучение

Python

Личные инструменты