Участник:Кулунчаков

Материал из MachineLearning.

Перейти к: навигация, поиск

Кулунчаков Андрей Сергеевич

МФТИ, ФУПМ, 174 группа

Кафедра "Интеллектуальные системы"

kulu-andrej@yandex.ru

Содержание

Отчет о научно-исследовательской работе

Весна 2014, 6-й семестр

Обнаружение изоморфных структур существенно нелинейных прогностических моделей

В данной работе исследуется алгоритм поиска изоморфных подграфов для деревьев, отличный от переборного. Алгоритм позволяет разбивать вершины дерева на классы эквивалентности, индуцированные изоморфизмом поддеревьев с корнями в этих вершинах — корни изоморфных поддеревьев лежат в одном классе. Это позволяет сокращать размерность вектора параметров регрессионной модели, если представлять ее в виде ориентированного дерева и унифицировать параметры в каждой из его изоморфных веток. Также осуществляется замена подграфов дерева суперпозиции на изоморфные им и имеющие меньшую структурную сложность — это позволяет уменьшить структурную сложность всей модели. Оценивается сложность проверки изоморфности двух суперпозиций для предложенного и переборного алгоритмов. Выводится добавка к сложности алгоритма в случае выявления правил замены. По синтетическим данным и данным по биржевым опционам индуктивно порождаются регрессионные модели с помощью алгоритма MVR Composer. Показано уменьшение значения функционала качества этих моделей после упрощения. Демонстрируется неухудшение приближаемости моделью контрольной выборки. Показана вычислительная эффективность предложенного алгоритма в сравнении с исходным для эволюций с достаточной плотностью упрощаемых алгоритмом моделей. Сравнивается доля упрощаемых алгоритмом моделей в эволюции для алгоритма MVR Composer и переборного алгоритма генерирования моделей.

Публикация

Кулунчаков А.С., Стрижов В.В. Обнаружение изоморфных структур существенно нелинейных прогностических моделей // Intelligent Data Analysis, 2014 (подготовлено к подаче).

Осень 2014, 7-й семестр

Ранжирование документов с помощью структурно-простых моделей

В работе решается проблема поиска ранжирующей функции в задачах информационного поиска. Ранжирующая функция используется для оценки релевантности документа согласно поступающему текстовому запросу. Выборка содержит набор текстовых коллекций документов, которые экспертно-отранжированы согласно релевантности некоторым заданным запросам. Цель работы - получить новые ранжирующие функции, которые будут описывать эти данные статистически не менее точно, чем традиционно используемые ранжирующие функции. Предлагается искать такие функции в виде суперпозиций, порожденных заданной грамматикой. Для этого используется итеративный алгоритм направленного поиска таких суперпозиций, отличный от переборного. При этом будет показана оптимальность решения в некоторой его окрестности относительно выбранной метрики на моделях. Также с использованием метрики на данных будет показана окрестность данных, где найденное решение будет оптимальным.

Технический отчёт

Кулунчаков А.С. Ранжирование документов с помощью структурно-простых моделей, Технический отчёт // Сервер вычислительных экспериментов mvr.jmlda.org (дата обращения: 30.12.2014).

Доклад на соискание гранта

Кулунчаков А.С. Разработка программного обеспечения для увеличения релевантности выдачи документов в задаче информационного поиска // "Умник", МФТИ, осень 2014.

Публикация

Кулунчаков А.С., Стрижов В.В. Ранжирование документов с помощью структурно-простых моделей // Elsevier , 2015 (готовится к подаче).


Весна 2015, 8-й семестр

Generation of simple structured ranking models for information retrieval

This paper develops an algorithm for generating ranking models. The models rank documents from a given collection according to their relevance to queries. The models are generated as superpositions of given primitive functions. We use a genetic algorithm to generate these superpositions. Their structural complexity is controlled by a regularizator. To designate a stagnation of generation the algorithm uses a metric on superpositions. To evaluate the quality of a model we use Mean Average Precision criterion. We compare the best generated models with respect to classical IR models and the ones generated by the exhaustive algorithm. The computational experiment is conducted with respect to samples Trec5-8.

Бакалаврская диссертация

Kulunchakov A.S., Strijov V.V. Generation of simple structured ranking models for information retrieval. // Elsevier , 2015 (готовится перевод).

Осень 2015, 9-й семестр

Structural features extraction for time series classification

This paper considers the problem of time series classification. A time series can be approximated by a parametric forescasting model. We propose to classify time series through a classification of structures of the approximating models. We use a genetic algorithm to generate these models. A model is a superposition of primitive functions and is treated as a directed labeled tree. We use the structure of the trees to extract a set of structural parameters describing the model. Also we define a structural metric on directed labeled trees. This metric is used in voting classification algorithm to provide a model classification. We use the set of structural parameters and the metric to build different time series classifiers and compare them. We use physiological data to classify time series corresponding to the heart rate, the chest volume and the blood oxygen concentration. Proposed methods are compared with the approach of time series classification using parameters of an approximating model.

Текущая работа

Kulunchakov A.S., Strijov V.V. Structural features extraction for time series classification //, 2015-2016 (продолжается работа).

Личные инструменты