Нелинейная регрессия
Материал из MachineLearning.
Нелинейная регрессия - частный случай регрессионного анализа, в котором рассматриваемая регрессионная модель есть функция, зависящая от параметров и от одной или нескольких свободных переменных. Зависимость от параметров предполагается нелинейной.
Постановка задачи
Задана выборка из пар . Задана регрессионная модель , которая зависит от параметров и свободной переменной . Требуется найти такие значения параметров, которые доставляли бы минимум сумме квадратов регрессионных остатков
где остатки для .
Для нахождения минимума функции , приравняем к нулю её первые частные производные параметрам :
Так как функция в общем случае не имеет единственного минимума[1], то предлагается назначить начальное значение вектора параметров и приближаться к оптимальному вектору по шагам:
Здесь - номер итерации, - вектор шага.
На каждом шаге итерации линеаризуем модель с помощью приближения рядом Тейлора относительно параметров
Здесь элемент матрицы Якоби - функция параметра ; значение свободной переменной фиксировано. В терминах линеаризованной модели
и регрессионные остатки определены как
Подставляя последнее выражение в выражение (*), получаем
Преобразуя, получаем систему из линейных уравнений, которые называются [[метод наименьших квадратов|нормальным уравнением}
Запишем нормальное уравнение в матричном обозначении как
В том случае, когда критерий оптимальности регрессионой модели задан как взвешенная сумма квадратов остатков
нормальное уравнение будет иметь вид
Для нахождения оптимальных параметров используются метод сопряженных градиентов, алгоритм Гаусса-Ньютона или алгоритм Левенберга-Марквардта.
Литература
- Демиденко, Е. З. Оптимизация и регрессия. М.: Наука. 1989. 296 с.