Метод градиентного спуска
Материал из MachineLearning.
Содержание |
Постановка задачи
Рассмотрим задачу поиска минимума функции , записываемую в виде:
Пусть функция такова, что можно вычислить ее градиент.
Метод градиентного спуска
Идея метода
Основная идея метода заключается в том, чтобы осуществлять оптимизацию в направлении наискорейшего спуска, а это направление задаётся антиградиентом :
где выбирается
- постоянной, в этом случае метод может расходиться;
- дробным шагом, т.е. длина шага в процессе спуска делится на некое число;
- наискорейшим спуском:
Алгоритм
Вход: функция
Выход: найденная точка оптимума
- Повторять:
- , где выбирается одним из описанных выше способов
- если выполен критерий останова, то возвращаем текущее значение
Критерий останова
Критерии остановки процесса приближенного нахождения минимума могут быть основаны на различных соображениях. Некоторые из них:
Здеcь - значение, полученное после -го шага оптимизации. - наперед заданное положительное число.
Сходимость метода
Теорема 1 о сходимости метода градиентного спуска спуска с постоянным шагом.
Пусть , функция дифференцируема, ограничена снизу. Пусть выполняется условие Липшица для градиента : . Пусть .
Тогда при любом выборе начального приближения.
В условиях теоремы градиентный метод обеспечивает сходимость либо к точной нижней грани (если функция не имеет минимума) либо к значению Существуют примеры, когда в точке реализуется седло, а не минимум. Тем не менее, на практике методы градиентного спуска обычно обходят седловые точки и находят локальные минимумы целевой функции.
Определение. Дифференцируемая функция называется сильно выпуклой (с константой ), если для любых и из справедливо
Теорема 2 о сходимости метода градиентного спуска спуска с постоянным шагом.
Пусть функция дифференцируема, сильно выпукла. Пусть выполняется условие Липшица для градиента : . Пусть .
Тогда при любом выборе начального приближения.
Числовые примеры
Рекомендации программисту
Заключение
Ссылки
Список литературы
- А.А.Самарский, А.В.Гулин. Численные методы. Москва «Наука», 1989.
- Н.С.Бахвалов, Н.П.Жидков, Г.М.Кобельков. Численные методы. Лаборатория Базовых Знаний, 2003.
- Н.Н.Калиткин. Численные методы. Москва «Наука», 1978.
- Н.И.Глебов, Ю.А.Кочетов, А.В.Плясунов. Методы оптимизации. 2000.