Статистика случайных процессов (курс лекций, ФКН ВШЭ)
Материал из MachineLearning.
Курс дает теоретический и практический фундамент, необходимый при решении множества реальных промышленных задач, связанных с анализом данных в режиме реального времени. Необходимость в таких методах возникает во многих прикладных областях — например, при анализе временных рядов цен на акции, спроса на товары, числа посещений главной страницы интернет-поисковика. Трудность таких задач заключается в требовании максимально эффективного использования накопленной и поступающей информации для прогнозирования появления событий в неизвестном будущем или их обнаружения при неопределенном настоящем. Курс дает двоякие знания — математическую базу теории случайных процессов и навыки практической реализации алгоритмов анализа данных в оффлайн и онлайн-режимах. Будут рассмотрены основные подходы и вероятностные модели теории случайных процессов, такие как гауссовость, марковость, авторегрессионные модели, локально стационарные модели, модели в задачах скорейшего обнаружения; численные алгоритмы, в том числе сегментация, шумоподавление, оценка статистических характеристик, ключевые статистики в задачах обнаружения разладок и аномалий; слушателям будет предложена серия задач, направленных на анализ реальных данных посредством практического применения рассматриваемых подходов.
Занятия проходят на ФКН ВШЭ.
Лектор: Алексей Валерьевич Артемов. Лекции проходят по пятницам с 9:00 до 10:20 в ауд. 509 и (по нечетным неделям) с 12:10 до 13:30 в ауд. 317.
Полезные ссылки
[Репозиторий с материалами на GitHub]
Почта для сдачи домашних заданий: hse.cs.stochastics@gmail.com
Оставить отзыв на курс: форма
Вопросы по курсу можно задавать на почту курса, а также в телеграм лектору (artonson@) или семинаристу. Вопросы по материалам лекций/семинаров и по заданиям лучше всего оформлять в виде [Issue] в [github-репозитории курса].
Семинары
Группа | Преподаватель | Учебный ассистент | Расписание | Почта для ДЗ |
---|---|---|---|---|
1 | Хромова Ольга Михайловна | Георгий Варганов | пятница, 10:30 – 11:50 (13:30 по четным неделям), ауд. 300 | hse.cs.stochastics@gmail.com |
2 | Волхонский Денис Алексеевич | Гайни Икрам | пятница, 10:30 – 11:50 (13:30 по четным неделям), ауд. 311 | hse.cs.stochastics@gmail.com |
Консультации
Система выставления оценок по курсу в 3-м модуле
- В рамках курса предполагается три практических задания, четыре домашних заданий и экзамен. Каждое задание и экзамен оцениваются по десятибалльной шкале.
- В итоговой оценке 50% составляют баллы за домашние задания и 50% – баллы за практические задания. Для получения финального результата (0, 4–10) итоговая оценка по курсу округляется в большую сторону.
- Сдача экзамена является необязательной и позволяет получить до 2 дополнительных баллов в итоговую оценку.
- Для получения итоговой оценки >= 8 баллов необходимо сдать все домашние и практические задания на положительный балл, для получения итоговой оценки >= 6 баллов необходимо сдать не менее двух практических и трех домашних заданий, для получения итоговой оценки >= 4 баллов необходимо сдать не менее одного практического и двух домашних заданий.
Формирование итоговой оценки по курсу по итогам 3-го и 4-го модулей
- За каждый из двух модулей выставляется независимая оценка в шкале 0, 4-10.
- Итоговая оценка по курсу вычисляется как среднее арифметическое двух оценок за каждый из модулей с дальнейшим округлением к ближайшему целому (.5 округляется к единице).
- Если по одному из модулей оценка 0 баллов, то итоговая оценка за курс – также 0 баллов.
Правила сдачи заданий
В рамках курса предполагается сдача нескольких домашних и практических заданий. Домашнее задание сдаётся к началу очередного семинара на листочках или (по согласованию с семинаристом) по почте в виде скана или pdf-файла. Домашние задания после срока сдачи не принимаются. Практические задания сдаются по почте. Эти задания могут быть присланы после срока сдачи, при этом начисляется штраф из расчёта 0.2 балла в день, но суммарно не более 6 баллов. При сдаче задания позже срока его проверка гарантируется только в случае, если оно было прислано не позже одной недели до официального окончания сессии.
Все домашние и практические задания выполняются самостоятельно. Если задание выполнялось сообща или использовались какие-либо сторонние коды и материалы, то об этом должно быть написано в отчёте. В противном случае «похожие» решения считаются плагиатом и все задействованные студенты (в том числе те, у кого списали) будут сурово наказаны.
Лекции
Дата | № занятия | Занятие | Материалы |
---|---|---|---|
13 января 2017 | 1 | Введение в курс. Основы теории случайных процессов. Непрерывность случайного процесса. | Конспект лекции |
13 января 2017 | 2 | Стационарные случайные процессы. Пуассоновский и винеровский процесс. | Конспект лекции |
20 января 2017 | 3 | Генерирование реализаций случайных процессов. Дискретные марковские цепи. | IPython-тетрадки |
27 января 2017 | 4 | Марковские случайные процессы. | |
27 января 2017 | 5 | Авторегрессионные и условно-гауссовские модели временных рядов. |
Семинары
№ п/п | Дата | Занятие | Материалы |
---|---|---|---|
1 | 10 января 2017 | Скорости сходимости. Матричные вычисления. | Конспект |
2 | 17 января 2017 | Производные и условия оптимальности | Конспект |
Домашние задания
Задание 1. Скорости сходимости и матричные вычисления. Срок сдачи: 17 января 2017 (на семинаре).
Задание 2. Производные и условия оптимальности. Срок сдачи: 31 января 2017 (на семинаре).
Литература
- J. Nocedal, S. Wright. Numerical Optimization, Springer, 2006.
- S. Boyd, L. Vandenberghe. Convex Optimization, Cambridge University Press, 2004.
- S. Sra et al.. Optimization for Machine Learning, MIT Press, 2011.
- A. Ben-Tal, A. Nemirovski. Optimization III. Lecture Notes, 2013.
- Б. Поляк. Введение в оптимизацию, Наука, 1983.
- Y. Nesterov. Introductory Lectures on Convex Optimization: A Basic Course, Springer, 2003.
- R. Fletcher. Practical Methods of Optimization, Wiley, 2000.
- A. Antoniou, W.-S. Lu. Practical Optimization: Algorithms and Engineering Applications, Springer, 2007.
- W. Press et al.. Numerical Recipes. The Art of Scientific Computing, Cambridge University Press, 2007.