Прикладной статистический анализ данных (курс лекций, 2017)
Материал из MachineLearning.
Лекторы: К. Воронцов, М. Хальман, Ш. Ишкина, А. Романенко, П. Швечиков.
Содержание |
Расписание занятий
Занятия начинаются в 10:30, если отдельно не указано иное.
Дата | Тема | Аудитория (лекция, семинар) |
---|---|---|
10.02.2017 | Базовые распределения, статистики и их свойства; Оценка параметров | л,с : 607 |
13.02.2017 | Проверка параметрических гипотез | л,с : 526б |
17.02.2017 | Проверка непараметрических гипотез | л,с : ? |
20.02.2017 | Множественная проверка гипотез | л: 523, с: 526б |
27.02.2017 | Анализ зависимостей | л,с : ? |
10.03.2017 | Линейная регрессия | л,с : ? |
17.03.2017 | Дополнения и обобщения регрессии | л,с : ? |
24.03.2017 | Прогнозирование временных рядов, часть 1 | л,с : ? |
31.03.2017 | Прогнозирование временных рядов, часть 2 | л,с : ? |
07.04.2017 | Причинно-следственные связи | л,с : ? |
Система выставления оценок по курсу
По курсу запланировано 4 практических задания и экзамен. Оценки за выполнение практических заданий суммируются.
Итоговая оценка за курс является средним между суммарной оценкой за практические задания и оценкой за экзамен.
Разбалловку по заданиям смотри в разделе Практические задания .
Практическая работа
Основные ссылки
- Для работы на семинарах вам понадобятся ноутбуки с установленными на них R и RStudio.
- Инструкция по установке и запуску swirl
- Некоторые основные опции Rmarkdown
- Advanced R – для тех, кто хочет разобраться в том, как работает R изнутри
Минимальная практика
Для того, чтобы успешно выполнять практические задания и работать на семинаре, вам необходимо приобрести минимальные навыки работы в R. Для этого скачайте R, RStudio, и установите swirl (ссылки приведены выше).
До семинара, убедитесь, пожалуйста, что вы прошли из блока "R Programming: The basics of programming in R" пакета swirl (инструкция по установке и запуску swirl) следующие уроки:
- 1: Basic Building Blocks
- 4: Vectors
- 7: Matrices and Data Frames
- 10: lapply and sapply
- 13: Simulation
- 15: Base Graphics
В противном случае на семинаре вы не сможете полноценно влиться в работу и получите дополнительные сложности при выполнении практических заданий.
Практические задания
Дедлайн по всем заданиям – две недели с даты выдачи. Например, дедлайн по 1 практическому заданию выданному 17.02.2017 будет 03.03.2017 23:59.
Номер задания | Дата выдачи | Дедлайн | Название работы | Максимальный балл |
---|---|---|---|---|
1 | 17.02.2017 | 03.03.2017 23:59 | Исследование свойств стат. критериев на модельных данных | ? |
2 | 03.03.2017 | Проверка стастгипотез | ? | |
3 | 17.03.2017 | Линейная и обобщенная линейная регрессия | ? | |
4 | 31.03.2017 | Прогнозирование временных рядов | ? |
Литература
1. Основная литература
- Вальд, А. Последовательный анализ. — М.: Физматлит, 1960.
- Кобзарь, А.И. Прикладная математическая статистика. — М.: Физматлит, 2006.
- Лагутин, М.Б. Наглядная математическая статистика. — М.: П-центр, 2003.
- Agresti, A. Categorical Data Analysis. — Hoboken: John Wiley & Sons, 2013.
- Bilder, C.R., Loughin, T.M. Analysis of Categorical Data with R. — Boca Raton: Chapman and Hall/CRC, 2013.
- Bonnini, S., Corain, L., Marozzi, M., Salmaso S. Nonparametric Hypothesis Testing: Rank and Permutation Methods with Applications in R. — Hoboken: John Wiley & Sons, 2014.
- Bretz, F., Hothorn, T., Westfall, P. Multiple Comparisons Using R. — Boca Raton: Chapman and Hall/CRC, 2010.
- Chihara, L., Hesterberg, T. Mathematical Statistics with Resampling and R — Hoboken: John Wiley & Sons, 2011.
- Diez, D.M, Barr, C.D., Cetinkaya-Rundel, M., Dorazio, L. Advanced High School Statistics. — OpenIntro, 2015.
- Hyndman, R.J., Athanasopoulos G. Forecasting: principles and practice. — OTexts, 2016. https://www.otexts.org/book/fpp
- Kanji, G.K. 100 statistical tests. — London: SAGE Publications, 2006.
- Mukhopadhyay, N., de Silva, B. M. Sequential methods and their applications. — Boca Raton: Chapman and Hall/CRC, 2009.
- Olsson, U. Generalized Linear Models: An Applied Approach. — Lund: Studentlitteratur, 2004.
- Pearl J., Glymour M., Jewell N.P. Causal Inference in Statistics: A Primer. — Chichester: John Wiley & Sons, 2016.
- Tabachnick, B.G., Fidell, L.S. Using Multivariate Statistics. — Boston: Pearson Education, 2012.
- Wooldridge, J. Introductory Econometrics: A Modern Approach. — Mason: South-Western Cengage Learning, 2013.
2. Дополнительная литература
- Cameron, A.A., Trivedi, P.K. Regression Analysis of Count Data. — Cambridge: Cambridge University Press, 2013.
- Dickhaus, T. Simultaneous Statistical Inference With Applications in the Life Sciences. — Heidelberg: Springer, 2014.
- Good, P. Permutation, Parametric and Bootstrap Tests of Hypotheses: A Practical Guide to Resampling Methods for Testing Hypotheses. — New York: Springer, 2005.
- Hosmer, D.W., Lemeshow S., Sturdivant, R.X. Applied Logistic Regression. — Hoboken: John Wiley & Sons, 2013.
- Kirchgassner, G., Wolters, J., Hassler, U. Introduction to modern time series analysis. — Heidelberg: Springer, 2013.
- Nagarajan, R., Scutari, M., Lèbre, S. Bayesian Networks in R with Applications in Systems Biology. — New York: Springer, 2013.