Участник:Айнагуль Джумабекова/Песочница
Материал из MachineLearning.
Содержание |
Введение
Постановка математической задачи
Численное дифференцирование применяется, если функцию трудно или невозможно продифференцировать аналитически - например, если она задана таблицей. Оно нужно также при решении дифференциальных уравнений при помощи разностных методов.
Изложение метода
При численном дифференцировании функцию аппроксимируют легко вычисляемой функцией и приближенно полагают . При этом можно использовать различные способы аппроксимации.
Интерполирование полиномами Лагранжа
Рассмотрим неравномерную сетку и обозначим за , шаги этой сетки. В качества примера получим формулы численного дифференцирования, основанные на использовании многочлена Лагранжа , построенного для функции по трем точкам . Многочлен имеет вид
Отсюда получим
Это выражение можно принять за приближенное значение в любой точке ∈ . Его удобнее записать в виде , где , .
В частности, при получим , И если сетка равномерна, , то приходим к центральной разностной производной, . При использовании интерполяционного многочлена первой степени точно таким образом можно получить односторонние разностные производные и . Далее вычисляя вторую производную многочлена , получим приближенное выражение для при ∈:
≈
На равномерной сетке это выражение совпадает со второй разностной производной . Ясно, что для приближенного вычисления дальнейших производных уже недостаточно многочлена , надо привлекать многочлены более высокого порядка и тем самым увеличивать число узлов, участвующих в аппроксимации.
Порядок погрешности аппроксимации зависит как от порядка интерполяционного многочлена, так и от расположения узлов интерполирования. Получим выражение для погрешности аппроксимации, возникающей при замене выражением . Будем считать, что ∈ и что величины имеют один и тот же порядок малости при измельчении сетки. По формуле Тейлора в предположении ограниченности получим ,
где ,±
Отсюда приходим к следующим разложениям разностных отношений
Подставляя полученные формулы в выражение для разностной производной и приводя подобные слагаемые получим
, ∈ .
Отсюда видно,что разностное выражение аппроксимирует со вторым порядком.
Если подставить полученные ранее разностные отношения в выражение для второй производной многочлена , то имеем
Из этого выражения видно, что даже на равномерной сетке,т.е. когда , второй порядок аппроксимации имеет место лишь в точке , а относительно других точек (например,) выполняется аппроксимация только первого порядка. Таким образом, получим аппроксимацию лишь первого порядка.