Адаптивная композиция моделей прогнозирования

Материал из MachineLearning.

Перейти к: навигация, поиск

Содержание

Постановка задачи

Пусть задан временной ряд: y_1 \ldots y_t,\; y_i \in R.

Будем решать задачу прогнозирования временного ряда.

При использовании адаптивной композиции моделей (АКМ) прогноз формируется как взвешенная сумма прогнозов, полученных по альтернативным моделям.

Обозначения

  • \hat{y}_{t+d} - прогноз y_{t+d}, сделанный в момент времени t
  • \hat{y}_{j,t+d} - прогноз модели под номером j в момент времени t на момент времени t+d
  • \vareps_{jt}=y_t-\hat{y}_{jt}
  • \tilde\vareps_{jt}=\gamma|\vareps_{jt}|+(1-\gamma)\tilde\vareps_{j,t-1} - сглаживающая ошибка
  • w_{j,t} - веса моделей, \sum_{j=1}^kw_{j,t}=1\; \forall{t}; w_{j,t}\geq0

Прогноз

В АКМ используется следующий вид прогноза:

\hat{y}_{t+1}:=\sum_{j=1}^kw_{j,t}\hat{y}_{j,t+d}

Выбор весов

Веса предлагается брать адаптированными:

w_{jt}=\frac{\bigl(\tilde\vareps_{jt}\bigr)^{-1}}{\sum_{j=1}^k\bigl(\tilde\vareps_{jt}\bigr)^{-1}}

Примечание

Вариант без использования весов - адаптивная селекция моделей прогнозирования.

Литература

Лукашин Ю. П. Адаптивные методы краткосрочного прогнозирования временных рядов.. — М.: Финансы и статистика, 2003. — 416 с. — ISBN 5-279-02740-5

См. также

Личные инструменты