Сезонность

Материал из MachineLearning.

Перейти к: навигация, поиск

В экономике многие явления характеризуются периодически повторяющимися сезонными эффектами. Соответственно временные ряды, их отражающие, содержат периодические сезонные колебания. Эти ряды и их колебания можно представить как генерируемые моделями двух основных типов: моделями с мультипликативными и с аддитивными коэффициентами сезонности. Модели первого типа имеют вид:


где динамика величины a_{l,t} характеризует тенденцию развития процесса;¶ f_t, f_{t-1},..., f_{t-l+1} -- коэффициенты сезонности; l — количество фаз в полном сезонном цикле (если ряд представляет месячные наблюдения, то в экономике обычно l = 12, при квартальных данных l = 4 и т. п.); eps_t — неавтокоррелированный шум с нулевым математическим ожиданием.

Модели второго типа записываются как: где величина (h, t описывает тенденцию развития процесса; , ёи gt -it •... gt - г + i—аддитивные коэффициенты сезонности; / — количество фаз в полном сезонном цикле:

Личные инструменты