Критерий Пейджа

Материал из MachineLearning.

Версия от 22:52, 10 января 2009; Denis Khromov (Обсуждение | вклад)
(разн.) ← Предыдущая | Текущая версия (разн.) | Следующая → (разн.)
Перейти к: навигация, поиск

Критерий Пейджа является непараметрическим критерием, предназначенным для проверки однородности статистических даннных.

Содержание

Примеры задач

Пусть на некотором предприятии k подразделений выполняют одну и ту же работу, но на оборудовании различных производителей. Каждому подразделению соответствует выборка, состоящая из рабочих этого подразделения. Каждое значение в выборке - это числовая оценка производительности данного рабочего. Требуется определить, даёт ли использование одного оборудования лучший результат по сравнению с оборудованием других производителей.

Другой пример: предположим, существует k альтернативных агротехнических методов обработки полей. Для каждого такого метода составим выборку из обработанных им полей. Значение в выборке равно урожайности данного поля. Требуется определить, эквивалентны ли эти методы с точки зрения объёма собираемого урожая.

Описание критерия

Дано kn наблюдений x_{ij}, где 1 \le i \le n, 1 \le j \le k, . Через H_0 обозначим гипотезу о равенстве средних для каждой из k групп:

\bar{x_1}=\dots=\bar{x_k}.

Для каждого i, где 1 \le i \le n, упорядочим последовательность

x_{i1}, x_{i2}, \dots, x_{ik}.

Ранг элемента x_{ij} внутри такой последовательности обозначим через r_{ij}. Очевидно,

1 \le r_{ij} \le k.

Статистика критерия имеет вид

L = \sum_{j=1}^k jR_j,

где

R_j = \sum_{i=1}^n r_{ij}.

Гипотеза H_0 принимается, если L < L_\alpha(n, k). Критические значения L_\alpha(n, k) находятся при помощи интерполяции табличных данных.

При n > 10 распределение L(n, k) можно аппроксимировать нормальным:

L(n, k) \sim N(\frac{nk(k+1)^2}4, \frac{n(k^3-k)^2}{144(k-1)}).

Литература

  1. Кобзарь А. И. Прикладная математическая статистика. — М.: Физматлит, 2006. — 816 с.
  2. Page E. B. Ordered hypotheses for multiple treatments: A significance test for linear ranks // JASA. 1963. V. 58. P. 216-230.

См. также

Ссылки

Личные инструменты